Rosario R Riso, Matteo Castagnola, Enrico Ronca, Henrik Koch
{"title":"Chiral polaritonics: cavity-mediated enantioselective excitation condensation.","authors":"Rosario R Riso, Matteo Castagnola, Enrico Ronca, Henrik Koch","doi":"10.1088/1361-6633/ad9ed9","DOIUrl":null,"url":null,"abstract":"<p><p>Separation of the two mirror images of a chiral molecule, the enantiomers, is a historically complicated problem of major relevance for biological systems. Since chiral molecules are optically active, it has been speculated that strong coupling to circularly polarized fields may be used as a general procedure to unlock enantiospecific reactions. In this work, we focus on how chiral cavities can be used to drive asymmetry in the photochemistry of chiral molecular systems. We first show that strong coupling to circularly polarized fields leads to enantiospecific Rabi splittings, an effect that displays a collective behavior in line with other strong coupling phenomena. Additionally, entanglement with circularly polarized light generates an asymmetry in the enantiomer population of the polaritons, leading to a condensation of the excitation on a preferred molecular configuration. These results confirm that chiral cavities represent a tantalizing opportunity to drive asymmetric photochemistry in enantiomeric mixtures.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad9ed9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Separation of the two mirror images of a chiral molecule, the enantiomers, is a historically complicated problem of major relevance for biological systems. Since chiral molecules are optically active, it has been speculated that strong coupling to circularly polarized fields may be used as a general procedure to unlock enantiospecific reactions. In this work, we focus on how chiral cavities can be used to drive asymmetry in the photochemistry of chiral molecular systems. We first show that strong coupling to circularly polarized fields leads to enantiospecific Rabi splittings, an effect that displays a collective behavior in line with other strong coupling phenomena. Additionally, entanglement with circularly polarized light generates an asymmetry in the enantiomer population of the polaritons, leading to a condensation of the excitation on a preferred molecular configuration. These results confirm that chiral cavities represent a tantalizing opportunity to drive asymmetric photochemistry in enantiomeric mixtures.