Inter-session Reliability of Magnetic Nerve Stimulation and Within-Session comparison to Electrical Nerve Stimulation in Evaluating Neuromuscular Function of Knee Extensor Muscles.

IF 2 4区 医学 Q3 NEUROSCIENCES Journal of Electromyography and Kinesiology Pub Date : 2024-12-10 DOI:10.1016/j.jelekin.2024.102964
Romina Ledergerber, Martin Keller
{"title":"Inter-session Reliability of Magnetic Nerve Stimulation and Within-Session comparison to Electrical Nerve Stimulation in Evaluating Neuromuscular Function of Knee Extensor Muscles.","authors":"Romina Ledergerber, Martin Keller","doi":"10.1016/j.jelekin.2024.102964","DOIUrl":null,"url":null,"abstract":"<p><p>The Interpolated Twitch Technique with electrical nerve stimulation (ENS) is the considered gold-standard to assess voluntary activation (VA) but causes discomfort. Magnetic nerve stimulation (MNS) offers a painless alternative, though its validity and reliability remain underexplored. This study validates MNS to ENS and evaluates inter-session reliability in 16 healthy young adults (11 females). Data on resting single twitches (RS), superimposed doublets (ST) during maximal voluntary contractions, and resting double twitches (RT) were assessed using both MNS and ENS, alongside discomfort ratings (VAS). Intraclass correlation (ICC), coefficient of variation (CV) and mean absolute percentage error (MAPE) were used to quantify agreement between stimulations and/or inter-session reliability. Strong agreement between MNS and ENS was found for RS, RT, and VA (ICC = 0.77-0.88), with MAPE values of 4.4 % (VA) and 9.5 % (RT). Discomfort was lower for MNS (VAS = 1.0 ± 0.9) than ENS (VAS = 1.9 ± 1.1). Intersession-reliability for MNS was good (ICC = 0.78-0.95) with low CV for VA (4.9 %) but high for RS, RT and ST (61.7 %, 28.9 %, 82.0 %). Based on these results, MNS provides a valid, reliable, and painless alternative to ENS for assessing VA in knee extensor muscles. However, individual evoked twitches varied across methods and sessions, warranting caution when interpreting absolute values.</p>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"80 ","pages":"102964"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jelekin.2024.102964","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Interpolated Twitch Technique with electrical nerve stimulation (ENS) is the considered gold-standard to assess voluntary activation (VA) but causes discomfort. Magnetic nerve stimulation (MNS) offers a painless alternative, though its validity and reliability remain underexplored. This study validates MNS to ENS and evaluates inter-session reliability in 16 healthy young adults (11 females). Data on resting single twitches (RS), superimposed doublets (ST) during maximal voluntary contractions, and resting double twitches (RT) were assessed using both MNS and ENS, alongside discomfort ratings (VAS). Intraclass correlation (ICC), coefficient of variation (CV) and mean absolute percentage error (MAPE) were used to quantify agreement between stimulations and/or inter-session reliability. Strong agreement between MNS and ENS was found for RS, RT, and VA (ICC = 0.77-0.88), with MAPE values of 4.4 % (VA) and 9.5 % (RT). Discomfort was lower for MNS (VAS = 1.0 ± 0.9) than ENS (VAS = 1.9 ± 1.1). Intersession-reliability for MNS was good (ICC = 0.78-0.95) with low CV for VA (4.9 %) but high for RS, RT and ST (61.7 %, 28.9 %, 82.0 %). Based on these results, MNS provides a valid, reliable, and painless alternative to ENS for assessing VA in knee extensor muscles. However, individual evoked twitches varied across methods and sessions, warranting caution when interpreting absolute values.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
70
审稿时长
74 days
期刊介绍: Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques. As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.
期刊最新文献
Inter-session Reliability of Magnetic Nerve Stimulation and Within-Session comparison to Electrical Nerve Stimulation in Evaluating Neuromuscular Function of Knee Extensor Muscles. Effect of tasks on intramuscular regional differences in rectus femoris elasticity during isometric contraction: An ultrasound shear wave elastography study. Flexor hallucis longus and tibialis anterior: A synergistic relationship. The unprecedented progresses in neuromechanics over the past 50 years - In celebration of the 50th anniversary of the international society of biomechanics. Wavelet-based time-frequency intermuscular beta-band coherence decreases with age but increases after mental fatigue in ankle muscles during gait independent of age.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1