Radiation and heat generation effect on MHD natural convection in hybrid nanofluid-filled inclined wavy porous cavity incorporating a cross-shaped obstacle
Lioua Kolsi, A.M. Rashad, Nirmalendu Biswas, M.A. Mansour, Taha Salah, Aboulbaba Eladeb, Taher Armaghani
{"title":"Radiation and heat generation effect on MHD natural convection in hybrid nanofluid-filled inclined wavy porous cavity incorporating a cross-shaped obstacle","authors":"Lioua Kolsi, A.M. Rashad, Nirmalendu Biswas, M.A. Mansour, Taha Salah, Aboulbaba Eladeb, Taher Armaghani","doi":"10.1108/hff-07-2024-0556","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to explore, through a numerical study, buoyant convective phenomena in a porous cavity containing a hybrid nanofluid, taking into account the local thermal nonequilibrium (LTNE) approach. The cavity contains a solid block in the shape of a cross (+). It will be helpful to develop and optimize the thermal systems with intricate geometries under LTNE conditions for a variety of applications.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>To attain the objective, the system governing partial differential equations (PDEs), expressed as functions of the current function and temperature, and are solved numerically by the finite difference approach. The authors carefully examine the heat transfer rates and dynamics of the micropolar hybrid nanofluid by presenting fluid flow contours, isotherms of the liquid and solid phases, as well as contours of streamlines, isotherms and concentration of the fluid. Key parameters analyzed include heated length (<em>B</em> = 0.1–0.5), porosity (<em>ε</em> = 0.1–0.9), heat absorption/generation (<em>Q</em> = 0–8), length wave (<em>λ</em> = 1–3) and the interphase heat transfer coefficient (<em>H</em>* = 0.05–10). The equations specific to the flow of a micropolar fluid are converted into classical Navier–Stokes equations by increasing the porosity and pore size.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results showed that the shape, strength and position of the fluid circulation are dictated by the size of the inner obstacle (<em>B</em>) as well as the effective length of the heating wall. The lower value of obstruction size, as well as heating wall length, leads to a higher rate of heat transfer. Heat transfer is much higher for the higher amount of heat absorption instead of heat generation (<em>Q</em>). The higher porosity values lead to lesser fluid resistance, which leads to a superior heat transfer from the hot source to the cold walls. The surface waviness of 4 leads to superior heat transfer related to any other waviness.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>This work can be further investigated by looking at thermal performance in the existence of various-shaped obstructions, curvature effects, orientations, boundary conditions and other variables. Numerical simulations or experimental studies in different multiphysical contexts can be used to achieve this.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>Many technical fields, including heat exchanging unit, crystallization processes, microelectronic units, energy storage processes, mixing devices, food processing, air conditioning systems and many more, can benefit from the geometric configurations investigated in this study.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This work numerically explores the behavior of micropolar nanofluids (a mixture of copper, aluminum oxide and water) within a porous inclined enclosure with corrugated walls, containing a solid insert in the shape of a cross in the center, under the oriented magnetic field, by applying the nonlocal thermal equilibrium model. It analyzes in detail the heat transfer rates and dynamics of the micropolar nanoliquid by presenting the flow patterns, the temperature of liquid and solid phases, as well as the variations in the flow, thermal and concentration fields of the fluid.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"92 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-07-2024-0556","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to explore, through a numerical study, buoyant convective phenomena in a porous cavity containing a hybrid nanofluid, taking into account the local thermal nonequilibrium (LTNE) approach. The cavity contains a solid block in the shape of a cross (+). It will be helpful to develop and optimize the thermal systems with intricate geometries under LTNE conditions for a variety of applications.
Design/methodology/approach
To attain the objective, the system governing partial differential equations (PDEs), expressed as functions of the current function and temperature, and are solved numerically by the finite difference approach. The authors carefully examine the heat transfer rates and dynamics of the micropolar hybrid nanofluid by presenting fluid flow contours, isotherms of the liquid and solid phases, as well as contours of streamlines, isotherms and concentration of the fluid. Key parameters analyzed include heated length (B = 0.1–0.5), porosity (ε = 0.1–0.9), heat absorption/generation (Q = 0–8), length wave (λ = 1–3) and the interphase heat transfer coefficient (H* = 0.05–10). The equations specific to the flow of a micropolar fluid are converted into classical Navier–Stokes equations by increasing the porosity and pore size.
Findings
The results showed that the shape, strength and position of the fluid circulation are dictated by the size of the inner obstacle (B) as well as the effective length of the heating wall. The lower value of obstruction size, as well as heating wall length, leads to a higher rate of heat transfer. Heat transfer is much higher for the higher amount of heat absorption instead of heat generation (Q). The higher porosity values lead to lesser fluid resistance, which leads to a superior heat transfer from the hot source to the cold walls. The surface waviness of 4 leads to superior heat transfer related to any other waviness.
Research limitations/implications
This work can be further investigated by looking at thermal performance in the existence of various-shaped obstructions, curvature effects, orientations, boundary conditions and other variables. Numerical simulations or experimental studies in different multiphysical contexts can be used to achieve this.
Practical implications
Many technical fields, including heat exchanging unit, crystallization processes, microelectronic units, energy storage processes, mixing devices, food processing, air conditioning systems and many more, can benefit from the geometric configurations investigated in this study.
Originality/value
This work numerically explores the behavior of micropolar nanofluids (a mixture of copper, aluminum oxide and water) within a porous inclined enclosure with corrugated walls, containing a solid insert in the shape of a cross in the center, under the oriented magnetic field, by applying the nonlocal thermal equilibrium model. It analyzes in detail the heat transfer rates and dynamics of the micropolar nanoliquid by presenting the flow patterns, the temperature of liquid and solid phases, as well as the variations in the flow, thermal and concentration fields of the fluid.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf