Redox-innocent scandium(III) as the sole catalyst in visible light photooxidations

Radek, Cibulka, Amal, Tolba, Ahmed M., El-Zohry, Jafar Iqbal , Khan, Eva, Svobodová, Josef, Chudoba, Jiří, Klíma, Karol, Lušpai, Jiří, Šturala
{"title":"Redox-innocent scandium(III) as the sole catalyst in visible light photooxidations","authors":"Radek, Cibulka, Amal, Tolba, Ahmed M., El-Zohry, Jafar Iqbal , Khan, Eva, Svobodová, Josef, Chudoba, Jiří, Klíma, Karol, Lušpai, Jiří, Šturala","doi":"10.26434/chemrxiv-2024-m0xw7","DOIUrl":null,"url":null,"abstract":"In recent years, the catalytic activity of scandium triflate [Sc(OTf)3] has attracted significant attention due to its robust Lewis acidity and the oxophilicity of Sc3+. These features have led to impressive progress in developing diverse organic reactions, including C-C bond formation. The Sc3+ cation also facilitates single electron transfer (SET) processes in photoinduced reactions either by coordination to an organophotoredox catalyst, which substantially modifies its redox reactivity, or by the formation of a scandium–superoxide anion complex (Sc3+-O-O•−) after electron transfer from a light-absorbing redox-active compound. The prior consideration of Sc3+ as a redox-inactive/innocent metal ion initially hampered the investigation of the possibility of using Sc(OTf)3 as a sole visible light photoredox catalyst. This research breaks new ground by demonstrating the inaugural use of Sc(OTf)3 as a visible light photocatalyst capable of direct and mild aerobic oxidative C-H functionalisation of aromatic substrates by oxidation of the benzylic position and direct cyanation of the aromatic ring.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-m0xw7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the catalytic activity of scandium triflate [Sc(OTf)3] has attracted significant attention due to its robust Lewis acidity and the oxophilicity of Sc3+. These features have led to impressive progress in developing diverse organic reactions, including C-C bond formation. The Sc3+ cation also facilitates single electron transfer (SET) processes in photoinduced reactions either by coordination to an organophotoredox catalyst, which substantially modifies its redox reactivity, or by the formation of a scandium–superoxide anion complex (Sc3+-O-O•−) after electron transfer from a light-absorbing redox-active compound. The prior consideration of Sc3+ as a redox-inactive/innocent metal ion initially hampered the investigation of the possibility of using Sc(OTf)3 as a sole visible light photoredox catalyst. This research breaks new ground by demonstrating the inaugural use of Sc(OTf)3 as a visible light photocatalyst capable of direct and mild aerobic oxidative C-H functionalisation of aromatic substrates by oxidation of the benzylic position and direct cyanation of the aromatic ring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化还原无辜的钪(III)作为可见光光氧化反应的唯一催化剂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ligand-induced Changes in the Electrocatalytic Activity of Atomically Precise Au₂₅ Nanoclusters Binding mechanism of adenylate kinase-specific monobodies Photochemistry of Ni(II) tolyl chlorides supported by bidentate ligand frameworks A Chemical Investigation Approach of the Paraconiothyrium sp. FKR-0637 Fungal Strain Enables the Isolation of the New Chlorinated Chromone, Nohocumone Development of an Automated Workflow for Screening the Assembly and Host-Guest Behaviour of Metal-Organic Cages towards Accelerated Discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1