Eco-friendly and ready-to-market polyurethanes: a Design of Experiment-guided substitution of toxic catalyst and fossil-based isocyanate.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-12-14 DOI:10.1002/cssc.202402451
Gabriele Viada, Nicole Mariotti, Simone Galliano, Alberto Menozzi, Claudia Barolo, Matteo Bonomo
{"title":"Eco-friendly and ready-to-market polyurethanes: a Design of Experiment-guided substitution of toxic catalyst and fossil-based isocyanate.","authors":"Gabriele Viada, Nicole Mariotti, Simone Galliano, Alberto Menozzi, Claudia Barolo, Matteo Bonomo","doi":"10.1002/cssc.202402451","DOIUrl":null,"url":null,"abstract":"<p><p>In this contribution, we tackle the replacement of the Hg-based catalyst and fossil-derived isocyanate precursors toward the formulation of a more sustainable polyurethane thermosetting resins (PUs), emulating the performance of a fully fossil-based one employed in industrial encapsulation of optoelectronics. A mixed Bi-Zn catalyst and a 71% bio-based isocyanate are exploited at this aim through multivariate chemometric approaches, namely Design of Experiment (DoE). DoE allows us to investigate the effect of different formulation factors on selected parameters, such as the film flexibility and transparency or the gel time. More in detail, it is found that a low amount of Zn-rich catalytic mixture leads to a ready-to-market polyurethane only when a fossil-based isocyanate is used. Differently, PUs formulated with bio-based isocyanate, albeit showing a higher bio-based content, present an insufficient optical purity, jeopardizing their market acceptability. Nevertheless, adding a negligible amount of a specific long chain fatty acid as reactivity modulator in the formulation leads to a bubbles-free and ready-to-market resin showing an impressive 65% w/w content of circular and bio-based components.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402451"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402451","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this contribution, we tackle the replacement of the Hg-based catalyst and fossil-derived isocyanate precursors toward the formulation of a more sustainable polyurethane thermosetting resins (PUs), emulating the performance of a fully fossil-based one employed in industrial encapsulation of optoelectronics. A mixed Bi-Zn catalyst and a 71% bio-based isocyanate are exploited at this aim through multivariate chemometric approaches, namely Design of Experiment (DoE). DoE allows us to investigate the effect of different formulation factors on selected parameters, such as the film flexibility and transparency or the gel time. More in detail, it is found that a low amount of Zn-rich catalytic mixture leads to a ready-to-market polyurethane only when a fossil-based isocyanate is used. Differently, PUs formulated with bio-based isocyanate, albeit showing a higher bio-based content, present an insufficient optical purity, jeopardizing their market acceptability. Nevertheless, adding a negligible amount of a specific long chain fatty acid as reactivity modulator in the formulation leads to a bubbles-free and ready-to-market resin showing an impressive 65% w/w content of circular and bio-based components.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生态友好型和随时上市的聚氨酯:以实验设计为指导的有毒催化剂和化石基异氰酸酯替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Cover Feature: Electrocatalysts for Urea Synthesis from CO2 and Nitrogenous Species: From CO2 and N2/NOx Reduction to urea synthesis (ChemSusChem 24/2024) Cover Feature: Recycling Valuable Phenol from Polycarbonate Plastic Waste Via Direct Depolymerization and Csp2−Csp3 Bond Cleavage Under Mild Conditions (ChemSusChem 24/2024) Cover Feature: Azolium-Porphyrin Electrosynthesis (ChemSusChem 24/2024) Front Cover: Ballistic-Aggregated Carbon Nanofoam in Target-Side of Pulsed Laser Deposition for Energy Storage Applications (ChemSusChem 24/2024) Converting the CHF3 Greenhouse Gas into Nanometer-Thick LiF Coating for High-Voltage Cathode Li-ion Batteries Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1