Factorial experiment to identify two-way interactions between temperature, harvesting period, hydraulic retention time, and light intensity that influence the biomass productivity and phosphorus removal efficiency of a microalgae-bacteria biofilm.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Science and Technology Pub Date : 2024-12-01 Epub Date: 2024-11-09 DOI:10.2166/wst.2024.367
Jacob Dean Watkins, Clayton Jack Lords, Abiela Meek Bradley, David Richard Cutler, Ronald Charles Sims
{"title":"Factorial experiment to identify two-way interactions between temperature, harvesting period, hydraulic retention time, and light intensity that influence the biomass productivity and phosphorus removal efficiency of a microalgae-bacteria biofilm.","authors":"Jacob Dean Watkins, Clayton Jack Lords, Abiela Meek Bradley, David Richard Cutler, Ronald Charles Sims","doi":"10.2166/wst.2024.367","DOIUrl":null,"url":null,"abstract":"<p><p>Rotating algae biofilm reactors (RABRs) can reduce energy requirements for wastewater reclamation but require further optimization for implementation at water resource recovery facilities (WRRF). Optimizing RABR operation is challenging because conditions at WRRF change frequently, and disregarding interaction terms related to these changes can produce incorrect conclusions about RABR behavior. This study evaluated the two-way interaction and main effects of four factors on the biomass productivity and phosphorus removal efficiency of a microalgae-bacteria biofilm grown in municipal anaerobic digester centrate, with factor levels and operating conditions selected to mimic a pilot RABR at a WRRF in Utah. Two-way interactions harvesting period*light intensity (LI), harvesting period*temperature, and LI*hydraulic retention time (HRT) had significant effects on biomass productivity: at high temperature and low LI, highest biomass productivity was achieved with a 14-day harvesting period, but at medium temperature and high LI, highest biomass productivity was achieved with a 7-day harvesting period. At high HRT, highest biomass productivity occurred at low LI, but at low HRT, highest biomass productivity occurred at high LI. Phosphorus removal was strongly influenced by LI and occurred most rapidly during the first 2 days HRT, which suggests precipitation contributed significantly to phosphorus removal. These observations provide insight for further RABR optimization.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 11","pages":"2961-2977"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.367","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rotating algae biofilm reactors (RABRs) can reduce energy requirements for wastewater reclamation but require further optimization for implementation at water resource recovery facilities (WRRF). Optimizing RABR operation is challenging because conditions at WRRF change frequently, and disregarding interaction terms related to these changes can produce incorrect conclusions about RABR behavior. This study evaluated the two-way interaction and main effects of four factors on the biomass productivity and phosphorus removal efficiency of a microalgae-bacteria biofilm grown in municipal anaerobic digester centrate, with factor levels and operating conditions selected to mimic a pilot RABR at a WRRF in Utah. Two-way interactions harvesting period*light intensity (LI), harvesting period*temperature, and LI*hydraulic retention time (HRT) had significant effects on biomass productivity: at high temperature and low LI, highest biomass productivity was achieved with a 14-day harvesting period, but at medium temperature and high LI, highest biomass productivity was achieved with a 7-day harvesting period. At high HRT, highest biomass productivity occurred at low LI, but at low HRT, highest biomass productivity occurred at high LI. Phosphorus removal was strongly influenced by LI and occurred most rapidly during the first 2 days HRT, which suggests precipitation contributed significantly to phosphorus removal. These observations provide insight for further RABR optimization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过因子实验,确定温度、收割期、水力停留时间和光照强度之间的双向交互作用对微藻-细菌生物膜的生物量生产率和除磷效率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
期刊最新文献
Factorial experiment to identify two-way interactions between temperature, harvesting period, hydraulic retention time, and light intensity that influence the biomass productivity and phosphorus removal efficiency of a microalgae-bacteria biofilm. Hybrid modelling framework for ozonation and biological activated carbon in tertiary wastewater treatment. Impact of chemical oxygen demand to nitrogen ratio on ANAMMOX bacterial growth in an up-flow anaerobic sludge blanket reactor. Reduction of blue and total water footprints per unit biomass yield of silage maize with grey water footprint input in subsurface drip irrigation. Simulation-based process optimization of full-scale advanced wastewater treatment systems using powdered activated carbon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1