Electrochemical reduction of CO2 on pure and doped Cu2O(1 1 1)

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-12-09 DOI:10.1016/j.jcis.2024.12.056
Hongling Liu , Di Liu , Zhichao Yu , Haoyun Bai , Hui Pan
{"title":"Electrochemical reduction of CO2 on pure and doped Cu2O(1 1 1)","authors":"Hongling Liu ,&nbsp;Di Liu ,&nbsp;Zhichao Yu ,&nbsp;Haoyun Bai ,&nbsp;Hui Pan","doi":"10.1016/j.jcis.2024.12.056","DOIUrl":null,"url":null,"abstract":"<div><div>Cu<sub>2</sub>O has been demonstrated to be effective for converting CO<sub>2</sub> into value-added products. However, the mechanism of the carbon dioxide reduction (CO<sub>2</sub>R) on the most stable surface, Cu<sub>2</sub>O(1<!--> <!-->1<!--> <!-->1), is still under debate. Additionally, how to improve its activity and selectivity is a challenging issue too. In this work, we unravel that CO<sub>2</sub>R can occur before Cu<sub>2</sub>O reduction (Cu<sub>2</sub>O-R) when the applied potential is below −0.44 V and doping can improve its catalytic performance based on first-principles calculations. The pure Cu<sub>2</sub>O(1<!--> <!-->1<!--> <!-->1) surface shows high activity and selectivity for the production of formic acid (HCOOH). However, the performance of CO<sub>2</sub>R deteriorates on the reduced Cu<sub>2</sub>O(1<!--> <!-->1<!--> <!-->1). Doping p-block elements (Al, Ga, In, Tl, Sn, Pb, Bi) is proven to be a workable strategy to improve its catalytic performance by suppressing hydrogen evolution reaction (HER). Importantly, Ga-Cu<sub>2</sub>O exhibits the favorable bonding strength for *OCHO, which is responsible for the optimal catalytic activity (−0.18 V) among other p-block elements. Our calculations thus provide an insight into CO<sub>2</sub> reduction mechanism of Cu<sub>2</sub>O(1<!--> <!-->1<!--> <!-->1), favoring rational design of Cu<sub>2</sub>O-based catalyst.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 ","pages":"Pages 170-177"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724029084","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cu2O has been demonstrated to be effective for converting CO2 into value-added products. However, the mechanism of the carbon dioxide reduction (CO2R) on the most stable surface, Cu2O(1 1 1), is still under debate. Additionally, how to improve its activity and selectivity is a challenging issue too. In this work, we unravel that CO2R can occur before Cu2O reduction (Cu2O-R) when the applied potential is below −0.44 V and doping can improve its catalytic performance based on first-principles calculations. The pure Cu2O(1 1 1) surface shows high activity and selectivity for the production of formic acid (HCOOH). However, the performance of CO2R deteriorates on the reduced Cu2O(1 1 1). Doping p-block elements (Al, Ga, In, Tl, Sn, Pb, Bi) is proven to be a workable strategy to improve its catalytic performance by suppressing hydrogen evolution reaction (HER). Importantly, Ga-Cu2O exhibits the favorable bonding strength for *OCHO, which is responsible for the optimal catalytic activity (−0.18 V) among other p-block elements. Our calculations thus provide an insight into CO2 reduction mechanism of Cu2O(1 1 1), favoring rational design of Cu2O-based catalyst.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纯铜和掺杂铜氧化物(111)上的二氧化碳电化学还原。
Cu2O已被证明能有效地将二氧化碳转化为增值产品。然而,在最稳定的表面Cu2O(111)上,二氧化碳还原(CO2R)的机制仍存在争议。此外,如何提高其活性和选择性也是一个具有挑战性的问题。本研究通过第一性原理计算,揭示了当施加电位低于-0.44 V时,CO2R可以先于Cu2O还原(Cu2O- r)发生,掺杂可以提高其催化性能。纯Cu2O(111)表面对甲酸(HCOOH)的生成具有较高的活性和选择性。然而,CO2R的性能随着Cu2O的还原而恶化(111)。掺杂p块元素(Al, Ga, In, Tl, Sn, Pb, Bi)通过抑制析氢反应(HER)来提高其催化性能是可行的策略。重要的是,Ga-Cu2O对*OCHO具有良好的键合强度,这是其他p-block元素中催化活性最佳(-0.18 V)的原因。因此,我们的计算提供了对Cu2O(111)的CO2还原机理的深入了解,有利于合理设计Cu2O基催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Engineering of multiscale periodic macroporous NaTaO3: Decoupling mass transport and charge dynamics for enhanced hydrogen evolution. MoS2/MoN hierarchical heterostructure induces built-in electric field achieving high-rate and long-life lithium-ion batteries. Robust interfaces enabled by chemically stable Li3PO4 buffer layer toward high-performance thin-film all-solid-state supercapacitors. Regulating lateral Na ions deposition via ag nanoparticles-modified carbon cloth toward dendrite-free Na metal anodes. PVA-assisted construction of cathode-electrolyte interface pre-desolvation strategy realizes high-performance flexible aqueous zinc ion batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1