Novel hollow ultrasound-triggered ZnFe2O4-Bi2MoO6 S-scheme heterojunction for efficient ferroptosis-based tumor therapy.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-12-10 DOI:10.1016/j.jcis.2024.12.063
Wenting Li, Zhuoran Yang, Chunyu Yang, Wei Guo
{"title":"Novel hollow ultrasound-triggered ZnFe<sub>2</sub>O<sub>4</sub>-Bi<sub>2</sub>MoO<sub>6</sub> S-scheme heterojunction for efficient ferroptosis-based tumor therapy.","authors":"Wenting Li, Zhuoran Yang, Chunyu Yang, Wei Guo","doi":"10.1016/j.jcis.2024.12.063","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the challenge of enhancing ferroptosis efficacy for tumor therapy, particularly the limited therapeutic efficiency of current inducers due to tumor microenvironment constraints. Herein, we developed a hollow ultrasound-triggered ZnFe<sub>2</sub>O<sub>4</sub>-Bi<sub>2</sub>MoO<sub>6</sub> (ZB) S-scheme heterojunction loaded with artesunate (ART) to overcome these limitations. The ZB heterojunction with a particle size of ∼250 nm efficiently separates electron-hole pairs under ultrasound (US), promoting the generation of reactive oxygen species (ROS). The photodynamic effect of ZB further boosts ROS production, while ART, controlled-released by phase change materials under laser/US stimulation, enhances ROS production via Fe<sup>2+</sup>-mediated decomposition. This triple-enhanced strategy accumulates lipid peroxidation (LPO), significantly improving ferroptosis effects with a tumor suppression rate of 94.3 %. Moreover, ZB enables multimodal imaging and stimulates antitumor immunity, demonstrating its potential as a diagnostic and therapeutic agent. Our findings demonstrate the potential of this ZB@ART system in advancing ferroptosis-based tumor therapies, inspiring future designs of efficient ferroptosis inducers.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"132-146"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the challenge of enhancing ferroptosis efficacy for tumor therapy, particularly the limited therapeutic efficiency of current inducers due to tumor microenvironment constraints. Herein, we developed a hollow ultrasound-triggered ZnFe2O4-Bi2MoO6 (ZB) S-scheme heterojunction loaded with artesunate (ART) to overcome these limitations. The ZB heterojunction with a particle size of ∼250 nm efficiently separates electron-hole pairs under ultrasound (US), promoting the generation of reactive oxygen species (ROS). The photodynamic effect of ZB further boosts ROS production, while ART, controlled-released by phase change materials under laser/US stimulation, enhances ROS production via Fe2+-mediated decomposition. This triple-enhanced strategy accumulates lipid peroxidation (LPO), significantly improving ferroptosis effects with a tumor suppression rate of 94.3 %. Moreover, ZB enables multimodal imaging and stimulates antitumor immunity, demonstrating its potential as a diagnostic and therapeutic agent. Our findings demonstrate the potential of this ZB@ART system in advancing ferroptosis-based tumor therapies, inspiring future designs of efficient ferroptosis inducers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本研究探讨了如何提高肿瘤治疗的铁突变疗效这一难题,特别是目前的诱导剂因肿瘤微环境的限制而治疗效率有限的问题。在此,我们开发了一种负载青蒿琥酯(ART)的中空超声触发 ZnFe2O4-Bi2MoO6 (ZB) S 型异质结,以克服这些限制。粒径为 250 纳米的 ZB 异质结在超声(US)作用下能有效分离电子-空穴对,促进活性氧(ROS)的生成。ZB 的光动力效应进一步促进了 ROS 的产生,而在激光/US 刺激下由相变材料控制释放的 ART 则通过 Fe2+ 介导的分解作用增强了 ROS 的产生。这种三重增强策略可累积脂质过氧化物(LPO),显著提高铁氧化效应,肿瘤抑制率高达 94.3%。此外,ZB 还能进行多模态成像并刺激抗肿瘤免疫,显示了其作为诊断和治疗药物的潜力。我们的研究结果表明,ZB@ART 系统在推进基于铁突变的肿瘤疗法方面具有潜力,并启发了未来高效铁突变诱导剂的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
Sigma 4′,6-diamidino-2-phenylindole (DAPI)
Sigma Propidium iodide (PI)
Sigma 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA)
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Regulating the dispersion of CuO over SiO2 surface for selective oxidation of isobutane to tert-butanol. Photoclick surface modification of MOF-808 for galactose-mediated targeted chemotherapy. A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1