Vacancy engineering in tungsten oxide nanofluidic membranes for high-efficiency light-driven ion transport

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-12-12 DOI:10.1016/j.jcis.2024.12.075
Jiansheng Chen , Lina Wang , Komal Gola , Xinyi Zhang , Yue Guo , Jinhua Sun , Pan Jia , Jinming Zhou
{"title":"Vacancy engineering in tungsten oxide nanofluidic membranes for high-efficiency light-driven ion transport","authors":"Jiansheng Chen ,&nbsp;Lina Wang ,&nbsp;Komal Gola ,&nbsp;Xinyi Zhang ,&nbsp;Yue Guo ,&nbsp;Jinhua Sun ,&nbsp;Pan Jia ,&nbsp;Jinming Zhou","doi":"10.1016/j.jcis.2024.12.075","DOIUrl":null,"url":null,"abstract":"<div><div>Bioinspired light-driven ion transport has shown great potential in solar energy harvesting. To achieve efficiencies comparable to biological counterparts, effective coregulation of permselectivity and photoresponsivity is crucial. Herein, vacancy engineering has been proven to be a powerful strategy for considerably increasing the efficiency of light-driven ion transport in tungsten oxide (WO<sub>3−x</sub>) nanofluidic membranes by enhancing the negative surface charges and narrowing bandgaps. The enhancement in light-driven ion transport can be attributed to the efficient redistribution of surface charges due to the effective separation of photogenerated carriers. At an optimized vacancy concentration, WO<sub>2.66</sub> membrane (WO<sub>2.66</sub>M) delivers an ionic photocurrent of 0.8 μA cm<sup>−2</sup> in a 10<sup>−4</sup> M KCl electrolyte, which is four times higher than that generated by the original WO<sub>2.85</sub> membrane (WO<sub>2.85</sub>M). Following this strategy, uphill ion transport and photoenhanced osmotic energy conversion are successfully achieved in the WO<sub>3−x</sub> nanofluidic membrane system. This study shows that atomic vacancy engineering is an efficient approach to increase the light-driven ion transport dynamics of nanofluidics, providing an efficient strategy to enhance light-driven ion transport for potential applications in power harvesting and ion separation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 ","pages":"Pages 241-249"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724029278","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bioinspired light-driven ion transport has shown great potential in solar energy harvesting. To achieve efficiencies comparable to biological counterparts, effective coregulation of permselectivity and photoresponsivity is crucial. Herein, vacancy engineering has been proven to be a powerful strategy for considerably increasing the efficiency of light-driven ion transport in tungsten oxide (WO3−x) nanofluidic membranes by enhancing the negative surface charges and narrowing bandgaps. The enhancement in light-driven ion transport can be attributed to the efficient redistribution of surface charges due to the effective separation of photogenerated carriers. At an optimized vacancy concentration, WO2.66 membrane (WO2.66M) delivers an ionic photocurrent of 0.8 μA cm−2 in a 10−4 M KCl electrolyte, which is four times higher than that generated by the original WO2.85 membrane (WO2.85M). Following this strategy, uphill ion transport and photoenhanced osmotic energy conversion are successfully achieved in the WO3−x nanofluidic membrane system. This study shows that atomic vacancy engineering is an efficient approach to increase the light-driven ion transport dynamics of nanofluidics, providing an efficient strategy to enhance light-driven ion transport for potential applications in power harvesting and ion separation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效光驱动离子传输的氧化钨纳米流体膜空位工程。
生物激发的光驱动离子传输在太阳能收集中显示出巨大的潜力。为了达到与生物对应物相当的效率,有机选择性和光响应性的有效协同调节至关重要。在此,空位工程已被证明是一种有效的策略,可以通过增强表面负电荷和缩小带隙来显著提高氧化钨(WO3-x)纳米流体膜中光驱动离子传输的效率。光驱动离子输运的增强可归因于由于光生载流子的有效分离而导致的表面电荷的有效再分配。在最佳空位浓度下,WO2.66膜(WO2.66M)在10-4 M KCl电解液中产生的离子光电流为0.8 μA cm-2,是原WO2.85膜(WO2.85M)的4倍。在这种策略下,WO3-x纳米流体膜系统成功地实现了上坡离子传输和光增强渗透能转换。本研究表明,原子空位工程是提高纳米流体的光驱动离子输运动力学的有效途径,为光驱动离子输运在能量收集和离子分离方面的潜在应用提供了有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Anhydrous citric acid
阿拉丁
Anhydrous citric acid
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1