Lipid demixing reduces energy barriers for high-curvature vesicle budding.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2024-12-12 DOI:10.1016/j.bpj.2024.12.012
Itay Schachter
{"title":"Lipid demixing reduces energy barriers for high-curvature vesicle budding.","authors":"Itay Schachter","doi":"10.1016/j.bpj.2024.12.012","DOIUrl":null,"url":null,"abstract":"<p><p>Under standard physiological conditions, budding relies on asymmetries, including differences in leaflet composition, area, and osmotic conditions, and involves large curvature changes in nanoscale lipid vesicles. So far, the combined impact of asymmetry and high curvatures on budding has remained unknown. Here, using the continuum elastic theory, the budding pathway is detailed under realistic conditions. The model enables a quantitative description of the budding process and the budded state of both ideally and nonideally mixed lipid nanoscale vesicles. It shows that budding is less favored in smaller vesicles but that lipid demixing can significantly reduce its energy barrier, and yet high compositional deviations of more than 7% between the bud and vesicle only occur with phase separation on the bud.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Under standard physiological conditions, budding relies on asymmetries, including differences in leaflet composition, area, and osmotic conditions, and involves large curvature changes in nanoscale lipid vesicles. So far, the combined impact of asymmetry and high curvatures on budding has remained unknown. Here, using the continuum elastic theory, the budding pathway is detailed under realistic conditions. The model enables a quantitative description of the budding process and the budded state of both ideally and nonideally mixed lipid nanoscale vesicles. It shows that budding is less favored in smaller vesicles but that lipid demixing can significantly reduce its energy barrier, and yet high compositional deviations of more than 7% between the bud and vesicle only occur with phase separation on the bud.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂质脱混可降低高曲率囊泡萌发的能量障碍
在标准生理条件下,出芽依赖于不对称性,包括小叶组成、面积和渗透条件的差异,并涉及纳米级脂质囊泡的大曲率变化。到目前为止,不对称和高曲率对萌芽的综合影响仍然未知。本文运用连续介质弹性理论,详细分析了实际条件下的出芽路径。该模型能够定量描述理想和非理想混合脂质纳米级囊泡的出芽过程和出芽状态。结果表明,在较小的囊泡中出芽不太有利,但脂质脱混可以显著降低其能量屏障,但芽与囊泡之间的成分偏差大于7%,只有在芽相分离时才会出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Measurement force, speed and post-mortem time affect the ratio of CNS grey to white matter elasticity. Buckling of red blood cell membrane in narrow capillaries induces excessive wall shear stress. Structural and Hydrodynamic Characterization of Dimeric Human Oligoadenylate Synthetase 2. Aggregation and disaggregation of red blood cells: depletion versus bridging. Control of cardiac waves in human iPSC-CM syncytia by a Halbach array and magnetic nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1