Differential substrate preferences IN ACTINOBACTERIAL protein O-MANNOSYLTRANSFERASES and alteration of protein-O-MANNOSYLATION by choice of secretion pathway.
Hirak Saxena, Rucha Patel, John Kelly, Warren Wakarchuk
{"title":"Differential substrate preferences IN ACTINOBACTERIAL protein O-MANNOSYLTRANSFERASES and alteration of protein-O-MANNOSYLATION by choice of secretion pathway.","authors":"Hirak Saxena, Rucha Patel, John Kelly, Warren Wakarchuk","doi":"10.1093/glycob/cwae095","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-O-mannosylation (POM) is a form of O-glycosylation that is ubiquitous and has been studied extensively throughout in fungi and animals. The key glycosyltransferase, protein O-mannosyltransferase (PMT), a member of family GT-39, is also found in over 3,800 bacterial genomes but has only been minimally examined from prokaryotes. In prokaryotes POM has only been investigated in terms of pathogenicity (in Mycobacterium tuberculosis) even though there are far more non-pathogenic bacteria that appear to carry out POM. To date, there is no consensus on what benefit POM imparts to the non-pathogenic bacteria that can perform it. Through the generation of a POM deficient mutant of Corynebacterium glutamicum - a widely utilized and known protein O-mannosylating actinobacteria - this work shows that even closely related actinobacterial GT-39 s (the enzymes responsible for the initiation of POM) can have different substrate specificities for targets of POM. Moreover, presented here is evidence that POM does not only occur in a SEC-dependent manner; POM also occurs with TAT and non-SEC secreted substrates in a specific and likely tightly regulated manner. Together these results highlight the need for further biochemical characterization of POM in these and other bacterial species to help elucidate the true nature of its biological functions.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727336/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwae095","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-O-mannosylation (POM) is a form of O-glycosylation that is ubiquitous and has been studied extensively throughout in fungi and animals. The key glycosyltransferase, protein O-mannosyltransferase (PMT), a member of family GT-39, is also found in over 3,800 bacterial genomes but has only been minimally examined from prokaryotes. In prokaryotes POM has only been investigated in terms of pathogenicity (in Mycobacterium tuberculosis) even though there are far more non-pathogenic bacteria that appear to carry out POM. To date, there is no consensus on what benefit POM imparts to the non-pathogenic bacteria that can perform it. Through the generation of a POM deficient mutant of Corynebacterium glutamicum - a widely utilized and known protein O-mannosylating actinobacteria - this work shows that even closely related actinobacterial GT-39 s (the enzymes responsible for the initiation of POM) can have different substrate specificities for targets of POM. Moreover, presented here is evidence that POM does not only occur in a SEC-dependent manner; POM also occurs with TAT and non-SEC secreted substrates in a specific and likely tightly regulated manner. Together these results highlight the need for further biochemical characterization of POM in these and other bacterial species to help elucidate the true nature of its biological functions.
期刊介绍:
Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases).
Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.