Prevention of Intrauterine Adhesion with Platelet-Rich Plasma Double-Network Hydrogel.

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS Advanced biology Pub Date : 2024-12-14 DOI:10.1002/adbi.202400336
Zhuomin Wang, Ying Gu, Yiyuan Qu, Xujia Huang, Tao Sun, Wei Wu, Qianyu Hu, Xiao Chen, Yu Li, Huafei Zhao, Yingying Hu, Bingbing Wu, Jian Xu
{"title":"Prevention of Intrauterine Adhesion with Platelet-Rich Plasma Double-Network Hydrogel.","authors":"Zhuomin Wang, Ying Gu, Yiyuan Qu, Xujia Huang, Tao Sun, Wei Wu, Qianyu Hu, Xiao Chen, Yu Li, Huafei Zhao, Yingying Hu, Bingbing Wu, Jian Xu","doi":"10.1002/adbi.202400336","DOIUrl":null,"url":null,"abstract":"<p><p>Intrauterine adhesion (IUA) can negatively impact on pregnancy outcomes, leading to reduced pregnancy rates, secondary infertility, and an increased risk of pregnancy complications. Studies have shown that the application of platelet-rich plasma (PRP) in IUA patients is effective. However, the clinical readhesive rate of IUA after treatment is still high, especially in severe cases. Platelet-rich plasma double-network hydrogel (DN gel) is an engineered PRP double network hydrogel, which is a sodium alginate (SA) based PRP hydrogel with egg carton ion cross-linking and fibrin double network. The results of this study show that intrauterine injection of DN gel has a better effect on promoting endometrial regeneration and enhancing endometrial receptivity than PRP gel. The mechanism is analyzed through single-cell sequencing, which may be achieved by increasing the expression of neutrophils (Neut), natural killer cells (NK), and type I classical dendritic cells (cDC1) in the endometrium and inhibiting the infiltration of M2 macrophages. Overall, based on the good healing efficiency and good biocompatibility of DN gel, it is expected to become a method of treating IUA with better efficacy and faster clinical translation.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e2400336"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202400336","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Intrauterine adhesion (IUA) can negatively impact on pregnancy outcomes, leading to reduced pregnancy rates, secondary infertility, and an increased risk of pregnancy complications. Studies have shown that the application of platelet-rich plasma (PRP) in IUA patients is effective. However, the clinical readhesive rate of IUA after treatment is still high, especially in severe cases. Platelet-rich plasma double-network hydrogel (DN gel) is an engineered PRP double network hydrogel, which is a sodium alginate (SA) based PRP hydrogel with egg carton ion cross-linking and fibrin double network. The results of this study show that intrauterine injection of DN gel has a better effect on promoting endometrial regeneration and enhancing endometrial receptivity than PRP gel. The mechanism is analyzed through single-cell sequencing, which may be achieved by increasing the expression of neutrophils (Neut), natural killer cells (NK), and type I classical dendritic cells (cDC1) in the endometrium and inhibiting the infiltration of M2 macrophages. Overall, based on the good healing efficiency and good biocompatibility of DN gel, it is expected to become a method of treating IUA with better efficacy and faster clinical translation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用富血小板血浆双网水凝胶预防宫内粘连
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
期刊最新文献
Enteroendocrine Cells Sense Sucrose and Alter Enteric Neuron Excitability via Insulin Signaling. Unveiling the Potential of Natural Resources-Derived Therapeutics for Improved Malaria Management: Computational to Experimental Studies. Characterization and Optimization of Vesicle Properties in bioPISA: from Size Distribution to Post-Assembly Loading. Granulocyte Colony Stimulating Factor Enhances Decidualization Process of Endometrial Stromal Cells Through STAT3/HOXA10 Axis. Development of a pH-Responsive Antimicrobial and Potent Antioxidant Hydrogel for Accelerated Wound Healing: A Game Changer in Drug Delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1