A mini review of recent advances in environmentally friendly microplastic removal technologies in water systems.

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of contaminant hydrology Pub Date : 2024-12-08 DOI:10.1016/j.jconhyd.2024.104485
Seung Hyeon Lee, Sang-Jun Han, Jung-Ho Wee
{"title":"A mini review of recent advances in environmentally friendly microplastic removal technologies in water systems.","authors":"Seung Hyeon Lee, Sang-Jun Han, Jung-Ho Wee","doi":"10.1016/j.jconhyd.2024.104485","DOIUrl":null,"url":null,"abstract":"<p><p>The current increase in microplastic (MP) occurrence worldwide is predicted to cause severe environmental crises in the future. Therefore, it is imperative to develop innovative MP removal technologies that can effectively mitigate MP emissions in any given scenario. This review discusses recent environmentally friendly advances in MP removal technologies that aim to overcome the limitations of current technologies, prevent secondary pollution, and utilize low energy. It also explores the potential applicability of these technologies under the current environmental conditions in South Korea. The core principles of these technologies, such as adsorption or flocculation, focus on minimizing the energy required to initiate and sustain these processes and on reducing the usage of adsorbents and flocculants. Employing microalgae as flocculants and triboelectricity for electrophoresis are identified as promising technologies. Incinerating MP-adsorbed materials from the process could be a viable disposal method, potentially serving as a source of heat energy. Consequently, technologies based on biochar or microalgae are especially advantageous in this context. The location where these technologies are applied plays a crucial role in their overall energy consumption. Ideally, implementation should occur as close as possible to points where MPs are found or within wastewater treatment plants. Froth flotation, microalgae flocculation, and triboelectricity-based electrophoresis are suitable methods in this regard. Establishing and enforcing administrative systems, laws, and policies globally to prevent MP occurrence remains critical. However, while these measures are vital, the most effective method for reducing MP occurrence is lowering plastic consumption alongside implementing stringent segregation and collection procedures.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104485"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jconhyd.2024.104485","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The current increase in microplastic (MP) occurrence worldwide is predicted to cause severe environmental crises in the future. Therefore, it is imperative to develop innovative MP removal technologies that can effectively mitigate MP emissions in any given scenario. This review discusses recent environmentally friendly advances in MP removal technologies that aim to overcome the limitations of current technologies, prevent secondary pollution, and utilize low energy. It also explores the potential applicability of these technologies under the current environmental conditions in South Korea. The core principles of these technologies, such as adsorption or flocculation, focus on minimizing the energy required to initiate and sustain these processes and on reducing the usage of adsorbents and flocculants. Employing microalgae as flocculants and triboelectricity for electrophoresis are identified as promising technologies. Incinerating MP-adsorbed materials from the process could be a viable disposal method, potentially serving as a source of heat energy. Consequently, technologies based on biochar or microalgae are especially advantageous in this context. The location where these technologies are applied plays a crucial role in their overall energy consumption. Ideally, implementation should occur as close as possible to points where MPs are found or within wastewater treatment plants. Froth flotation, microalgae flocculation, and triboelectricity-based electrophoresis are suitable methods in this regard. Establishing and enforcing administrative systems, laws, and policies globally to prevent MP occurrence remains critical. However, while these measures are vital, the most effective method for reducing MP occurrence is lowering plastic consumption alongside implementing stringent segregation and collection procedures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水系统中环保型微塑料去除技术最新进展小结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
期刊最新文献
Sorption behavior of oxytetracycline on microplastics and the influence of environmental factors in groundwater: Experimental investigation and molecular dynamics simulation. Comparison of adsorption capacity of 4-Nonylphenol on conventional and biodegradable microplastics aged under natural water. First evidence of microplastics in the Quilca-Vítor-Chili river basin, Arequipa region, Peru. Characterization and risk assessment of microplastics pollution in Mohamaya Lake, Bangladesh. Effects of soil bulk density and corresponding soil infiltration rate on the migration and transformation of gibberellic acid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1