Li-Qin Shen, Zhong-Chun Zhang, Lu-Dan Zhang, Da Huang, Gongliang Yu, Min Chen, Renhui Li, Bao-Sheng Qiu
{"title":"Widespread distribution of chlorophyll f-producing Leptodesmis cyanobacteria.","authors":"Li-Qin Shen, Zhong-Chun Zhang, Lu-Dan Zhang, Da Huang, Gongliang Yu, Min Chen, Renhui Li, Bao-Sheng Qiu","doi":"10.1111/jpy.13538","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorophyll (Chl) f was reported as the fifth Chl in oxygenic photoautotrophs. Chlorophyll f production expanded the utilization of photosynthetically active radiation into the far-red light (FR) region in some cyanobacterial genera. In this study, 11 filamentous cyanobacterial strains were isolated from FR-enriched habitats, including hydrophyte, moss, shady stone, shallow ditch, and microbial mat across Central and Southern China. Polyphasic analysis classified them into the same genus of Leptodesmis and further recognized them as four new species, including Leptodesmis atroviridis sp. nov., Leptodesmis fuscus sp. nov., Leptodesmis olivacea sp. nov., and Leptodesmis undulata sp. nov. These cyanobacteria had absorption peaks beyond 700 nm due to Chl f production and red-shifted phycobiliprotein complexes under FR conditions. All but L. undulata produced phycoerythrin and showed varying degrees of a reddish-brown to dark green color under white light conditions. However, the phycoerythrin contents were sharply decreased under FR conditions, and these three Leptodesmis species appeared green. In summary, the Leptodesmis genus contains diverse species with the capacity to synthesize Chl f and is likely a ubiquitous group of Chl f-producing cyanobacteria.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.13538","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorophyll (Chl) f was reported as the fifth Chl in oxygenic photoautotrophs. Chlorophyll f production expanded the utilization of photosynthetically active radiation into the far-red light (FR) region in some cyanobacterial genera. In this study, 11 filamentous cyanobacterial strains were isolated from FR-enriched habitats, including hydrophyte, moss, shady stone, shallow ditch, and microbial mat across Central and Southern China. Polyphasic analysis classified them into the same genus of Leptodesmis and further recognized them as four new species, including Leptodesmis atroviridis sp. nov., Leptodesmis fuscus sp. nov., Leptodesmis olivacea sp. nov., and Leptodesmis undulata sp. nov. These cyanobacteria had absorption peaks beyond 700 nm due to Chl f production and red-shifted phycobiliprotein complexes under FR conditions. All but L. undulata produced phycoerythrin and showed varying degrees of a reddish-brown to dark green color under white light conditions. However, the phycoerythrin contents were sharply decreased under FR conditions, and these three Leptodesmis species appeared green. In summary, the Leptodesmis genus contains diverse species with the capacity to synthesize Chl f and is likely a ubiquitous group of Chl f-producing cyanobacteria.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.