Genome-Wide DNA Methylation Identifies Potential Disease-Specific Biomarkers and Pathophysiologic Mechanisms in Irritable Bowel Syndrome, Inflammatory Bowel Disease, and Celiac Disease.
Swapna Mahurkar-Joshi, Mike Thompson, Elizza Villarruel, James D Lewis, Lisa D Lin, Mary Farid, Hamed Nayeb-Hashemi, Tina Storage, Guy A Weiss, Berkeley N Limketkai, Jenny S Sauk, Emeran A Mayer, Lin Chang
{"title":"Genome-Wide DNA Methylation Identifies Potential Disease-Specific Biomarkers and Pathophysiologic Mechanisms in Irritable Bowel Syndrome, Inflammatory Bowel Disease, and Celiac Disease.","authors":"Swapna Mahurkar-Joshi, Mike Thompson, Elizza Villarruel, James D Lewis, Lisa D Lin, Mary Farid, Hamed Nayeb-Hashemi, Tina Storage, Guy A Weiss, Berkeley N Limketkai, Jenny S Sauk, Emeran A Mayer, Lin Chang","doi":"10.1111/nmo.14980","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and celiac disease (CeD) present with similar gastrointestinal (GI) symptoms. DNA methylation-based biomarkers have not been investigated as diagnostic biomarkers to classify these disorders. We aimed to study DNA methylation profiles of IBS, IBD, CeD, and healthy controls (HC), develop machine learning-based classifiers, and identify associated gene ontology (GO) terms.</p><p><strong>Methods: </strong>Genome-wide DNA methylation of peripheral blood mononuclear cells from 315 patients with IBS, IBD, CeD, and HC was measured using Illumina's 450K or EPIC arrays. A methylation dataset on 304 IBD and HC samples was used for external validation. Differential methylation was measured using general linear models. Classifiers were developed using penalized generalized linear models using double cross-validation controlling for confounders. Functional enrichment was assessed using GO.</p><p><strong>Results: </strong>Three hundred and fifteen participants (148 IBS, 47 IBD, 34 CeD, and 86 HC) had DNA methylation data. IBS-IBD and IBD-CeD showed the highest number of differentially methylated CpG sites followed by IBD-HC, CeD-HC, and IBS-HC. IBS-associated genes were enriched in cell adhesion and neuronal pathways, while IBD- and CeD-associated markers were enriched in inflammation and MHC class II pathways, respectively (p < 0.05). Classification performances assessed using area under the receiver operating characteristic curves (AUC) for IBS-IBD, IBS-CeD, and IBD-CeD were 0.80 (95% CI = 0.7-0.87, p = 6.75E-10), 0.78 (95% CI = 0.68-0.86, p = 4.57E-10), and 0.73 (95% CI = 0.62-0.83, p = 0.03), respectively. The performance of IBD-HC was successfully validated using external data (AUC = 0.74 [95% CI = 68-0.80, p < 0.001]).</p><p><strong>Conclusions: </strong>Blood-based DNA methylation biomarkers can potentially distinguish chronic GI disorders that present with similar symptoms. GO suggested functional significance of the classifiers in disease-specific pathology.</p>","PeriodicalId":19123,"journal":{"name":"Neurogastroenterology and Motility","volume":" ","pages":"e14980"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogastroenterology and Motility","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nmo.14980","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims: Irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and celiac disease (CeD) present with similar gastrointestinal (GI) symptoms. DNA methylation-based biomarkers have not been investigated as diagnostic biomarkers to classify these disorders. We aimed to study DNA methylation profiles of IBS, IBD, CeD, and healthy controls (HC), develop machine learning-based classifiers, and identify associated gene ontology (GO) terms.
Methods: Genome-wide DNA methylation of peripheral blood mononuclear cells from 315 patients with IBS, IBD, CeD, and HC was measured using Illumina's 450K or EPIC arrays. A methylation dataset on 304 IBD and HC samples was used for external validation. Differential methylation was measured using general linear models. Classifiers were developed using penalized generalized linear models using double cross-validation controlling for confounders. Functional enrichment was assessed using GO.
Results: Three hundred and fifteen participants (148 IBS, 47 IBD, 34 CeD, and 86 HC) had DNA methylation data. IBS-IBD and IBD-CeD showed the highest number of differentially methylated CpG sites followed by IBD-HC, CeD-HC, and IBS-HC. IBS-associated genes were enriched in cell adhesion and neuronal pathways, while IBD- and CeD-associated markers were enriched in inflammation and MHC class II pathways, respectively (p < 0.05). Classification performances assessed using area under the receiver operating characteristic curves (AUC) for IBS-IBD, IBS-CeD, and IBD-CeD were 0.80 (95% CI = 0.7-0.87, p = 6.75E-10), 0.78 (95% CI = 0.68-0.86, p = 4.57E-10), and 0.73 (95% CI = 0.62-0.83, p = 0.03), respectively. The performance of IBD-HC was successfully validated using external data (AUC = 0.74 [95% CI = 68-0.80, p < 0.001]).
Conclusions: Blood-based DNA methylation biomarkers can potentially distinguish chronic GI disorders that present with similar symptoms. GO suggested functional significance of the classifiers in disease-specific pathology.
期刊介绍:
Neurogastroenterology & Motility (NMO) is the official Journal of the European Society of Neurogastroenterology & Motility (ESNM) and the American Neurogastroenterology and Motility Society (ANMS). It is edited by James Galligan, Albert Bredenoord, and Stephen Vanner. The editorial and peer review process is independent of the societies affiliated to the journal and publisher: Neither the ANMS, the ESNM or the Publisher have editorial decision-making power. Whenever these are relevant to the content being considered or published, the editors, journal management committee and editorial board declare their interests and affiliations.