Efficient degradation of tetracycline by Mn(III)-microbial complexes mediated by mnOx@ACF in sequencing batch reactors: performance, mechanism, and effect on microbial community structure.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Science and Technology Pub Date : 2024-12-01 Epub Date: 2024-12-02 DOI:10.2166/wst.2024.390
Huo Zhou, Lixi Xiao, Yuwei Deng, Rongling Wang, Qiang Li, Yuxuan Ye, Xuanyuan Pei, Lei Sun, Yingzhou Zhang, Fei Pan
{"title":"Efficient degradation of tetracycline by Mn(III)-microbial complexes mediated by mnOx@ACF in sequencing batch reactors: performance, mechanism, and effect on microbial community structure.","authors":"Huo Zhou, Lixi Xiao, Yuwei Deng, Rongling Wang, Qiang Li, Yuxuan Ye, Xuanyuan Pei, Lei Sun, Yingzhou Zhang, Fei Pan","doi":"10.2166/wst.2024.390","DOIUrl":null,"url":null,"abstract":"<p><p>Engineered nanomaterials are widely used in water and wastewater treatment processes, and minimizing their adverse effects on biological treatment processes in wastewater treatment plants has become the primary focus. In this study, activated carbon fiber (ACF)-loaded manganese oxide nanomaterials (MnOx@ACF) were synthesized. A small-scale sequencing batch reactor (SBR) was constructed to simulate the synergistic degradation of pollutants by nanomaterials and microorganisms and the effects of nanomaterials on the structure of the microbial community in a wastewater treatment plant. The MnOx@ACF exhibited efficient removal of pollutants (98.7% in 30 cycles) and chemical oxygen demand (COD 96.4% in 30 cycles) through the formation of Mn-microbial complexes and enhanced cycling between Mn(III) and Mn(II) over 30 operating cycles. Metagenome analysis results showed that the microbial population composition and functional abundance increased when the SBR was exposed to different dosages of MnOx@ACF for a long time, among which 0.2 g/L MnOx@ACF exhibited the highest stimulation and influence on the functional abundance of microorganisms, which showed optimum ecological effects.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 11","pages":"3111-3122"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.390","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Engineered nanomaterials are widely used in water and wastewater treatment processes, and minimizing their adverse effects on biological treatment processes in wastewater treatment plants has become the primary focus. In this study, activated carbon fiber (ACF)-loaded manganese oxide nanomaterials (MnOx@ACF) were synthesized. A small-scale sequencing batch reactor (SBR) was constructed to simulate the synergistic degradation of pollutants by nanomaterials and microorganisms and the effects of nanomaterials on the structure of the microbial community in a wastewater treatment plant. The MnOx@ACF exhibited efficient removal of pollutants (98.7% in 30 cycles) and chemical oxygen demand (COD 96.4% in 30 cycles) through the formation of Mn-microbial complexes and enhanced cycling between Mn(III) and Mn(II) over 30 operating cycles. Metagenome analysis results showed that the microbial population composition and functional abundance increased when the SBR was exposed to different dosages of MnOx@ACF for a long time, among which 0.2 g/L MnOx@ACF exhibited the highest stimulation and influence on the functional abundance of microorganisms, which showed optimum ecological effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
序批式反应器中mnOx@ACF介导的Mn(III)-微生物配合物对四环素的高效降解:性能、机制及对微生物群落结构的影响
工程纳米材料在水和废水处理过程中得到了广泛的应用,减少其对污水处理厂生物处理过程的不利影响已成为人们关注的焦点。本研究合成了活性炭纤维(ACF)负载的氧化锰纳米材料(MnOx@ACF)。构建了小型序批式反应器(SBR),模拟了纳米材料与微生物协同降解污水处理厂污染物,以及纳米材料对污水处理厂微生物群落结构的影响。MnOx@ACF通过形成Mn-微生物络合物并在30个运行循环中增强Mn(III)和Mn(II)之间的循环,在30个循环中有效去除污染物(98.7%)和化学需氧量(96.4%)。宏基因组分析结果显示,SBR长期暴露于不同剂量MnOx@ACF后,微生物种群组成和功能丰度增加,其中0.2 g/L MnOx@ACF对微生物功能丰度的刺激和影响最大,生态效果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
期刊最新文献
Optimization of detention ponds for urban stormwater runoff and pollution control in multiple catchments system with analytical probabilistic models and particle swarm. Optimization of urban stormwater systems: a multi-criteria approach to sustainable and cost-effective LID implementation. Polyacrylic acid-based nanoplastics used in cosmetics: a study of biodegradability and effects on heterotrophic and nitrifying microorganisms in the activated sludge. Polyphenol extraction from industrial water by-products: a case study of the ULTIMATE project in the fruit processing industry. Antimicrobial activity of immobilized mycocins in sodium alginate on fecal coliforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1