Cluster synchronization of fractional-order two-layer networks and application in image encryption/decryption.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-12-11 DOI:10.1016/j.neunet.2024.107023
Juan Yu, Yanwei Yin, Tingting Shi, Cheng Hu
{"title":"Cluster synchronization of fractional-order two-layer networks and application in image encryption/decryption.","authors":"Juan Yu, Yanwei Yin, Tingting Shi, Cheng Hu","doi":"10.1016/j.neunet.2024.107023","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a type of fractional-order two-layer network model is constructed, wherein each layer in the network exhibits distinct topology. Subsequently, the cluster synchronization problem of fractional-order two-layer networks is investigated through a two-step approach. The initial step involves the implementation of finite-time cluster synchronization in the first layer by utilizing a fractional-order finite-time convergence lemma. Based upon this, the second step employs a novel approach of collectively treating the nodes within the same cluster in the first layer, thereby offering a significant insight for analyzing fractional-order two-layer networks cluster synchronization. In addition, the paper proposes a novel encryption/decryption scheme based on the cluster synchronization of fractional-order two-layer networks. By leveraging the complexity of chaotic sequences generated by fractional-order two-layer networks, the security of the encryption/decryption strategy is enhanced. Furthermore, three illustrative examples are provided to validate the theoretical findings.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107023"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.107023","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a type of fractional-order two-layer network model is constructed, wherein each layer in the network exhibits distinct topology. Subsequently, the cluster synchronization problem of fractional-order two-layer networks is investigated through a two-step approach. The initial step involves the implementation of finite-time cluster synchronization in the first layer by utilizing a fractional-order finite-time convergence lemma. Based upon this, the second step employs a novel approach of collectively treating the nodes within the same cluster in the first layer, thereby offering a significant insight for analyzing fractional-order two-layer networks cluster synchronization. In addition, the paper proposes a novel encryption/decryption scheme based on the cluster synchronization of fractional-order two-layer networks. By leveraging the complexity of chaotic sequences generated by fractional-order two-layer networks, the security of the encryption/decryption strategy is enhanced. Furthermore, three illustrative examples are provided to validate the theoretical findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分数阶双层网络的簇同步及在图像加密/解密中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Enabling deformation slack in tracking with temporally even correlation filters. Outer synchronization and outer H synchronization for coupled fractional-order reaction-diffusion neural networks with multiweights. Corrigendum to "Hydra: Multi-head Low-rank Adaptation for Parameter Efficient Fine-tuning" [Neural Networks Volume 178, October (2024), 1-11/106414]]. Adaptive discrete-time neural prescribed performance control: A safe control approach. Disentangled latent energy-based style translation: An image-level structural MRI harmonization framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1