MOLGENIS Armadillo: a lightweight server for federated analysis using DataSHIELD.

Tim Cadman, Mariska K Slofstra, Marije A van der Geest, Demetris Avraam, Tom R P Bishop, Tommy de Boer, Liesbeth Duijts, Sido Haakma, Eleanor Hyde, Vincent Jaddoe, Tarik Karramass, Fleur Kelpin, Yannick Marcon, Angela Pinot de Moira, Dick Postma, Clemens Tolboom, Ruben L Veenstra, Stuart Wheater, Marieke Welten, Rebecca C Wilson, Erik Zwart, Morris Swertz
{"title":"MOLGENIS Armadillo: a lightweight server for federated analysis using DataSHIELD.","authors":"Tim Cadman, Mariska K Slofstra, Marije A van der Geest, Demetris Avraam, Tom R P Bishop, Tommy de Boer, Liesbeth Duijts, Sido Haakma, Eleanor Hyde, Vincent Jaddoe, Tarik Karramass, Fleur Kelpin, Yannick Marcon, Angela Pinot de Moira, Dick Postma, Clemens Tolboom, Ruben L Veenstra, Stuart Wheater, Marieke Welten, Rebecca C Wilson, Erik Zwart, Morris Swertz","doi":"10.1093/bioinformatics/btae726","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Extensive human health data from cohort studies, national registries, and biobanks can reveal lifecourse risk factors impacting health. Combining these sources offers increased statistical power, rare outcome detection, replication of findings, and extended study periods. Traditionally, this required data transfer to a central location or separate partner analyses with pooled summary statistics, posing ethical, legal, and time constraints. Federated analysis-which involves remote data analysis without sharing individual-level data-is a promising alternative. One promising solution is DataSHIELD (https://datashield.org/), an open-source R based implementation. To enable federated analysis, data owners need a user-friendly way to install the federated infrastructure and manage users and data. Here, we present MOLGENIS Armadillo: a lightweight server for federated analysis solutions such as DataSHIELD.</p><p><strong>Availability and implementation: </strong>Armadillo is implemented as a collection of three packages freely available under the open source licence LGPLv3: two R packages downloadable from the Comprehensive R Archive Network (CRAN) (\"MolgenisArmadillo\" and \"DSMolgenisArmdillo\") and one Java application (\"ArmadilloService\") as jar and docker images via Github (https://github.com/molgenis/molgenis-service-armadillo).</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Extensive human health data from cohort studies, national registries, and biobanks can reveal lifecourse risk factors impacting health. Combining these sources offers increased statistical power, rare outcome detection, replication of findings, and extended study periods. Traditionally, this required data transfer to a central location or separate partner analyses with pooled summary statistics, posing ethical, legal, and time constraints. Federated analysis-which involves remote data analysis without sharing individual-level data-is a promising alternative. One promising solution is DataSHIELD (https://datashield.org/), an open-source R based implementation. To enable federated analysis, data owners need a user-friendly way to install the federated infrastructure and manage users and data. Here, we present MOLGENIS Armadillo: a lightweight server for federated analysis solutions such as DataSHIELD.

Availability and implementation: Armadillo is implemented as a collection of three packages freely available under the open source licence LGPLv3: two R packages downloadable from the Comprehensive R Archive Network (CRAN) ("MolgenisArmadillo" and "DSMolgenisArmdillo") and one Java application ("ArmadilloService") as jar and docker images via Github (https://github.com/molgenis/molgenis-service-armadillo).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOLGENIS Armadillo:使用 DataSHIELD 进行联合分析的轻量级服务器。
摘要:来自队列研究、国家登记和生物库的大量人类健康数据可以揭示影响健康的生命过程风险因素。将这些数据源结合起来可提高统计能力、检测罕见结果、复制研究结果并延长研究周期。传统上,这需要将数据传输到一个中央位置,或者由不同的合作伙伴进行分析,并汇总统计数据,这就造成了伦理、法律和时间上的限制。联合分析--涉及远程数据分析,但不共享个人层面的数据--是一种很有前途的替代方案。DataSHIELD (https://datashield.org/)就是一个很有前途的解决方案,它是基于 R 的开源实现。为了实现联合分析,数据所有者需要一种用户友好的方式来安装联合基础架构并管理用户和数据。在此,我们介绍 MOLGENIS Armadillo:用于联合分析解决方案(如 DataSHIELD)的轻量级服务器:Armadillo由三个软件包组成,在开源许可证LGPLv3下免费提供:两个R软件包可从Comprehensive R Archive Network (CRAN)下载("MolgenisArmadillo "和 "DSMolgenisArmdillo"),一个Java应用程序("ArmadilloService")以jar和docker镜像的形式通过Github (https://github.com/molgenis/molgenis-service-armadillo)提供:在补充材料中,我们提供了用户界面(UI)的截图,以说明如何使用 Armadillo。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EpicPred: Predicting phenotypes driven by epitope binding TCRs using attention-based multiple instance learning. Tribus: Semi-automated discovery of cell identities and phenotypes from multiplexed imaging and proteomic data. SimMS: A GPU-Accelerated Cosine Similarity implementation for Tandem Mass Spectrometry. Sul-BertGRU: An Ensemble Deep Learning Method integrating Information Entropy-enhanced BERT and Directional Multi-GRU for S-sulfhydration Sites prediction. HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1