A Highly Biocompatible Polyoxotungstate with Fenton‐like Reaction Activity for Potent Chemodynamic Therapy of Tumors

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI:10.1002/anie.202422949
Hui-Ping Xiao, Man-Yi Du, Xian-Bin Sun, Ruo-Fei Xu, Dong-Miao Li, Sheng-Nan Yue, Ping-Wei Cai, Rong-Zhi Sun, Zi-Zhong Zhang, Xing Huang, Xin-Xiong Li, Yu Gao, Shou-Tian Zheng
{"title":"A Highly Biocompatible Polyoxotungstate with Fenton‐like Reaction Activity for Potent Chemodynamic Therapy of Tumors","authors":"Hui-Ping Xiao, Man-Yi Du, Xian-Bin Sun, Ruo-Fei Xu, Dong-Miao Li, Sheng-Nan Yue, Ping-Wei Cai, Rong-Zhi Sun, Zi-Zhong Zhang, Xing Huang, Xin-Xiong Li, Yu Gao, Shou-Tian Zheng","doi":"10.1002/anie.202422949","DOIUrl":null,"url":null,"abstract":"Integrating Fenton chemistry and nanomedicine into cancer therapy has significantly promoted the development of chemodynamic therapy (CDT). Nanoscale polyoxometalates (POMs), with their reversible redox properties, exhibit promising potential in developing outstanding CDT drugs by exploring their Fenton‐like catalytic reactivity in tumor environments. However, such research is still in its infancy. In this work, we report the synthesis of a new crystalline antimonotungstate {Dy2Sb2W7O23(OH)(DMF)2(SbW9O33)2} (1, DMF = N, N‐dimethylformamide) with gram‐scale high yield via a facile \"one‐pot\" solvothermal reaction. 1 exhibits not only a soluble and water‐stable POM nanocluster, but also excellent catalytic activity for hydroxyl radical‐generating Fenton‐like reactions. Further biomedical studies reveal that 1 can trigger cell apoptosis and promote lipid peroxidation, exhibiting high cytotoxicity and selectivity towards B16‐F10 mouse melanoma cancer cells with an IC50 value of 4.75 μM. Especially, 1 can inhibit melanoma growth in vivo with favorable biosafety, achieving a 5.2‐fold reduction in tumor volume and a weight loss of 76.0% at the dose of 70 μg/kg. This research not only demonstrates the immense potential of antimonotungstates in CDT drug development for the first time but also provides new insights and directions for the development of novel anticancer drugs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"26 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422949","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating Fenton chemistry and nanomedicine into cancer therapy has significantly promoted the development of chemodynamic therapy (CDT). Nanoscale polyoxometalates (POMs), with their reversible redox properties, exhibit promising potential in developing outstanding CDT drugs by exploring their Fenton‐like catalytic reactivity in tumor environments. However, such research is still in its infancy. In this work, we report the synthesis of a new crystalline antimonotungstate {Dy2Sb2W7O23(OH)(DMF)2(SbW9O33)2} (1, DMF = N, N‐dimethylformamide) with gram‐scale high yield via a facile "one‐pot" solvothermal reaction. 1 exhibits not only a soluble and water‐stable POM nanocluster, but also excellent catalytic activity for hydroxyl radical‐generating Fenton‐like reactions. Further biomedical studies reveal that 1 can trigger cell apoptosis and promote lipid peroxidation, exhibiting high cytotoxicity and selectivity towards B16‐F10 mouse melanoma cancer cells with an IC50 value of 4.75 μM. Especially, 1 can inhibit melanoma growth in vivo with favorable biosafety, achieving a 5.2‐fold reduction in tumor volume and a weight loss of 76.0% at the dose of 70 μg/kg. This research not only demonstrates the immense potential of antimonotungstates in CDT drug development for the first time but also provides new insights and directions for the development of novel anticancer drugs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Chemical upcycling of thermoplastics towards thermosets based on dynamic dimethylglyoxime‐urethane moiety Mechanistic Insights Into Post‐translational α‐Keto‐β‐Amino Acid Formation by a Radical S‐Adenosyl Methionine Peptide Splicease Site‐selective C(sp3)–H and Switchable C(sp3)–H/C(sp2)–H Functionalization Enabled by Electron‐deficient Cp*CF3Ir(III) Catalyst and Photosensitizer Anionic Doping in Layered Transition Metal Chalcogenides for Robust Lithium‐Sulfur Batteries Thermal Modulation of Exciton Recombination for High‐Temperature Ultra‐Long Afterglow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1