Fragment Discovery by X-Ray Crystallographic Screening Targeting the CTP Binding Site of Pseudomonas Aeruginosa IspD

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-15 DOI:10.1002/anie.202414615
Dr. Daan Willocx, Dr. Lucia D'Auria, Dr. Danica Walsh, Hugo Scherer, Dr. Alaa Alhayek, Dr. Mostafa M. Hamed, Dr. Franck Borel, Dr. Eleonora Diamanti, Prof. Anna K. H. Hirsch
{"title":"Fragment Discovery by X-Ray Crystallographic Screening Targeting the CTP Binding Site of Pseudomonas Aeruginosa IspD","authors":"Dr. Daan Willocx,&nbsp;Dr. Lucia D'Auria,&nbsp;Dr. Danica Walsh,&nbsp;Hugo Scherer,&nbsp;Dr. Alaa Alhayek,&nbsp;Dr. Mostafa M. Hamed,&nbsp;Dr. Franck Borel,&nbsp;Dr. Eleonora Diamanti,&nbsp;Prof. Anna K. H. Hirsch","doi":"10.1002/anie.202414615","DOIUrl":null,"url":null,"abstract":"<p>With antimicrobial resistance (AMR) reaching alarming levels, new anti-infectives with unprecedented mechanisms of action are urgently needed. The 2-<i>C</i>-methylerythritol-D-erythritol-4-phosphate (MEP) pathway represents an attractive source of drug targets due to its essential role in numerous pathogenic Gram-negative bacteria and <i>Mycobacterium tuberculosis</i> (<i>Mt</i>), whilst being absent in human cells. Here, we solved the first crystal structure of <i>Pseudomonas aeruginosa</i> (<i>Pa</i>) IspD, the third enzyme in the MEP pathway and present the discovery of a fragment-based compound class identified through crystallographic screening of <i>Pa</i>IspD. The initial fragment occupies the CTP binding cavity within the active site. Confirmation of fragment–protein interactions was achieved through <sup>1</sup>H saturation–transfer difference nuclear magnetic resonance (<sup>1</sup>H-STD NMR spectroscopy). Building upon these findings and insights from the co-crystal structures, we identified two growth vectors for fragment growing. We synthesized derivatives addressing both growth vectors, which showed improved affinities for <i>Pa</i>IspD. Our new fragment class targets <i>Pa</i>IspD, displays promising affinity and favorable growth vectors for further optimization.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 6","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202414615","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414615","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With antimicrobial resistance (AMR) reaching alarming levels, new anti-infectives with unprecedented mechanisms of action are urgently needed. The 2-C-methylerythritol-D-erythritol-4-phosphate (MEP) pathway represents an attractive source of drug targets due to its essential role in numerous pathogenic Gram-negative bacteria and Mycobacterium tuberculosis (Mt), whilst being absent in human cells. Here, we solved the first crystal structure of Pseudomonas aeruginosa (Pa) IspD, the third enzyme in the MEP pathway and present the discovery of a fragment-based compound class identified through crystallographic screening of PaIspD. The initial fragment occupies the CTP binding cavity within the active site. Confirmation of fragment–protein interactions was achieved through 1H saturation–transfer difference nuclear magnetic resonance (1H-STD NMR spectroscopy). Building upon these findings and insights from the co-crystal structures, we identified two growth vectors for fragment growing. We synthesized derivatives addressing both growth vectors, which showed improved affinities for PaIspD. Our new fragment class targets PaIspD, displays promising affinity and favorable growth vectors for further optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜绿假单胞菌IspD CTP结合位点的X射线晶体学筛选片段的发现
随着抗菌素耐药性(AMR)达到惊人的水平,迫切需要具有前所未有的作用机制的新型抗感染药物。2‐C‐甲基赤藓糖醇‐D‐赤藓糖醇‐4‐磷酸(MEP)途径是一个有吸引力的药物靶标来源,因为它在许多致病性革兰氏阴性细菌和结核分枝杆菌(Mt)中起重要作用,而在人类细胞中不存在。在这里,我们解决了铜绿假单胞菌(Pa) IspD的第一个晶体结构,这是MEP途径中的第三个酶,并通过PaIspD的晶体学筛选发现了一个基于片段的化合物类别。初始片段占据活性位点内的CTP结合腔。片段-蛋白质相互作用的确认是通过1H饱和转移差核磁共振(1H‐STD‐NMR)实现的。基于这些发现和来自共晶结构的见解,我们确定了片段生长的两种生长载体。我们合成了针对这两种生长载体的衍生物,这些衍生物对PaIspD的亲和力有所提高。我们的新片段类以PaIspD为靶点,具有良好的亲和性和良好的生长载体,可以进一步优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Dibenzazepine Bridged Network Polymeric Phthalocyanines as Degradable Heterogeneous Photocatalysts. Single-atom Electronic Bridge Facilitates Cascade Electron Transfer From Encapsulated Polyoxometalate to Metal-Organic Framework for Efficient Photocatalytic CO2 Conversion. Unit Symmetry-Breaking and Layered Linear Ordering Enabling Superior Short-Wave Ultraviolet Birefringent Crystal. Modulating Transient Solvation for Ultrahigh-Rate Sodium Metal Batteries. Water-Resistant Defective iMOFs via Halogen Coordination for CO2 Capture and Size-Selective Cycloaddition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1