MDQ: A QoS-Congestion Aware Deep Reinforcement Learning Approach for Multi-Path Routing in SDN

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Network and Computer Applications Pub Date : 2024-12-09 DOI:10.1016/j.jnca.2024.104082
Lizeth Patricia Aguirre Sanchez, Yao Shen, Minyi Guo
{"title":"MDQ: A QoS-Congestion Aware Deep Reinforcement Learning Approach for Multi-Path Routing in SDN","authors":"Lizeth Patricia Aguirre Sanchez, Yao Shen, Minyi Guo","doi":"10.1016/j.jnca.2024.104082","DOIUrl":null,"url":null,"abstract":"The challenge of link overutilization in networking persists, prompting the development of load-balancing methods such as multi-path strategies and flow rerouting. However, traditional rule-based heuristics struggle to adapt dynamically to network changes. This leads to complex models and lengthy convergence times, unsuitable for diverse QoS demands, particularly in time-sensitive applications. Existing routing approaches often result in specific types of traffic overloading links or general congestion, prolonged convergence delays, and scalability challenges. To tackle these issues, we propose a QoS-Congestion Aware Deep Reinforcement Learning Approach for Multi-Path Routing in Software-Defined Networking (MDQ). Leveraging Deep Reinforcement Learning, MDQ intelligently selects optimal multi-paths and allocates traffic based on flow needs. We design a multi-objective function using a combination of link and queue metrics to establish an efficient routing policy. Moreover, we integrate a congestion severity index into the learning process and incorporate a traffic classification phase to handle mice-elephant flows, ensuring that diverse class-of-service requirements are adequately addressed. Through an RYU-Docker-based Openflow framework integrating a Live QoS Monitor, DNC Classifier, and Online Routing, results demonstrate a 19%–22% reduction in delay compared to state-of-the-art algorithms, exhibiting robust reliability across diverse scenarios of network dynamics.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"37 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104082","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of link overutilization in networking persists, prompting the development of load-balancing methods such as multi-path strategies and flow rerouting. However, traditional rule-based heuristics struggle to adapt dynamically to network changes. This leads to complex models and lengthy convergence times, unsuitable for diverse QoS demands, particularly in time-sensitive applications. Existing routing approaches often result in specific types of traffic overloading links or general congestion, prolonged convergence delays, and scalability challenges. To tackle these issues, we propose a QoS-Congestion Aware Deep Reinforcement Learning Approach for Multi-Path Routing in Software-Defined Networking (MDQ). Leveraging Deep Reinforcement Learning, MDQ intelligently selects optimal multi-paths and allocates traffic based on flow needs. We design a multi-objective function using a combination of link and queue metrics to establish an efficient routing policy. Moreover, we integrate a congestion severity index into the learning process and incorporate a traffic classification phase to handle mice-elephant flows, ensuring that diverse class-of-service requirements are adequately addressed. Through an RYU-Docker-based Openflow framework integrating a Live QoS Monitor, DNC Classifier, and Online Routing, results demonstrate a 19%–22% reduction in delay compared to state-of-the-art algorithms, exhibiting robust reliability across diverse scenarios of network dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MDQ:面向 SDN 多路径路由的、意识到 QoS-拥塞的深度强化学习方法
网络中链路利用率过高的挑战依然存在,这促使人们开发了多路径策略和流量重路由等负载平衡方法。然而,传统的基于规则的启发式方法难以动态适应网络变化。这导致了复杂的模型和漫长的收敛时间,不适合各种 QoS 需求,尤其是对时间敏感的应用。现有的路由选择方法通常会导致特定类型的流量超载链路或普遍拥塞、收敛延迟过长以及可扩展性挑战。为了解决这些问题,我们为软件定义网络(MDQ)中的多路径路由提出了一种考虑到 QoS-拥塞的深度强化学习方法。利用深度强化学习,MDQ 可以智能地选择最佳多路径,并根据流量需求分配流量。我们结合链路和队列指标设计了一个多目标函数,以建立高效的路由策略。此外,我们还将拥塞严重程度指数纳入学习过程,并结合流量分类阶段来处理小象流量,确保充分满足不同的服务等级要求。通过一个基于 RYU-Docker 的 Openflow 框架,该框架集成了实时 QoS 监控、DNC 分类器和在线路由,结果表明与最先进的算法相比,延迟降低了 19%-22%,在网络动态的各种情况下都表现出了强大的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
期刊最新文献
On and off the manifold: Generation and Detection of adversarial attacks in IIoT networks Light up that Droid! On the effectiveness of static analysis features against app obfuscation for Android malware detection Clusters in chaos: A deep unsupervised learning paradigm for network anomaly detection Consensus hybrid ensemble machine learning for intrusion detection with explainable AI Adaptive differential privacy in asynchronous federated learning for aerial-aided edge computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1