A survey on energy efficient medium access control for acoustic wireless communication networks in underwater environments

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Network and Computer Applications Pub Date : 2024-12-04 DOI:10.1016/j.jnca.2024.104079
Walid K. Hasan, Iftekhar Ahmad, Daryoush Habibi, Quoc Viet Phung, Mohammad Al-Fawa'reh, Kazi Yasin Islam, Ruba Zaheer, Haitham Khaled
{"title":"A survey on energy efficient medium access control for acoustic wireless communication networks in underwater environments","authors":"Walid K. Hasan, Iftekhar Ahmad, Daryoush Habibi, Quoc Viet Phung, Mohammad Al-Fawa'reh, Kazi Yasin Islam, Ruba Zaheer, Haitham Khaled","doi":"10.1016/j.jnca.2024.104079","DOIUrl":null,"url":null,"abstract":"Underwater communication plays a crucial role in monitoring the aquatic environment on Earth. Due to their unique characteristics, underwater acoustic channels present unique challenges including lengthy signal transmission delays, limited data transfer bandwidth, variable signal quality, and fluctuating channel conditions. Furthermore, the reliance on battery power for most Underwater Wireless Acoustic Networks (UWAN) devices, coupled with the challenges associated with battery replacement or recharging, intensifies the challenges. Underwater acoustic communications are heavily constrained by available resources (e.g., very limited bandwidth, and limited energy storage). Consequently, the role of medium access control (MAC) protocol which distributes available resources among nodes is critical in maintaining a reliable underwater communication system. This study presents an extensive review of current research in MAC for UWAN. This study presents an extensive review of current research in MAC for UWAN. The paper explores the unique challenges and characteristics of UWAN, which are critical for the MAC protocol design. Subsequently, a diverse range of energy-efficient MAC techniques are categorized and reviewed. Potential future research avenues in energy-efficient MAC protocols are discussed, with a particular emphasis on the challenges to enable the broader implementation of the Green Internet of Underwater Things (GIoUT).","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"2 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104079","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater communication plays a crucial role in monitoring the aquatic environment on Earth. Due to their unique characteristics, underwater acoustic channels present unique challenges including lengthy signal transmission delays, limited data transfer bandwidth, variable signal quality, and fluctuating channel conditions. Furthermore, the reliance on battery power for most Underwater Wireless Acoustic Networks (UWAN) devices, coupled with the challenges associated with battery replacement or recharging, intensifies the challenges. Underwater acoustic communications are heavily constrained by available resources (e.g., very limited bandwidth, and limited energy storage). Consequently, the role of medium access control (MAC) protocol which distributes available resources among nodes is critical in maintaining a reliable underwater communication system. This study presents an extensive review of current research in MAC for UWAN. This study presents an extensive review of current research in MAC for UWAN. The paper explores the unique challenges and characteristics of UWAN, which are critical for the MAC protocol design. Subsequently, a diverse range of energy-efficient MAC techniques are categorized and reviewed. Potential future research avenues in energy-efficient MAC protocols are discussed, with a particular emphasis on the challenges to enable the broader implementation of the Green Internet of Underwater Things (GIoUT).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水下环境声无线通信网络节能介质接入控制研究
水下通信在监测地球上的水生环境中起着至关重要的作用。由于其独特的特性,水声信道面临着独特的挑战,包括长时间的信号传输延迟、有限的数据传输带宽、可变的信号质量和波动的信道条件。此外,大多数水下无线声学网络(UWAN)设备对电池供电的依赖,加上电池更换或充电的挑战,加剧了这一挑战。水声通信受到可用资源的严重限制(例如,非常有限的带宽和有限的能量存储)。因此,介质访问控制(MAC)协议在节点间分配可用资源的作用对于保证水下通信系统的可靠性至关重要。本研究对当前UWAN的MAC研究进行了广泛的回顾。本研究对当前UWAN的MAC研究进行了广泛的回顾。本文探讨了UWAN的独特挑战和特点,这对MAC协议的设计至关重要。随后,对各种节能MAC技术进行了分类和回顾。讨论了节能MAC协议的潜在未来研究途径,特别强调了实现绿色水下物联网(GIoUT)更广泛实施的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
期刊最新文献
ALB-TP: Adaptive Load Balancing based on Traffic Prediction using GRU-Attention for Software-Defined DCNs On and off the manifold: Generation and Detection of adversarial attacks in IIoT networks Light up that Droid! On the effectiveness of static analysis features against app obfuscation for Android malware detection Clusters in chaos: A deep unsupervised learning paradigm for network anomaly detection Consensus hybrid ensemble machine learning for intrusion detection with explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1