Empowering robotic training with kinesthetic learning and digital twins in human–centric industrial systems

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Industrial Information Integration Pub Date : 2024-12-03 DOI:10.1016/j.jii.2024.100743
Thien Tran, Quang Nguyen, Toan Luu, Minh Tran, Jonathan Kua, Thuong Hoang, Man Dien
{"title":"Empowering robotic training with kinesthetic learning and digital twins in human–centric industrial systems","authors":"Thien Tran, Quang Nguyen, Toan Luu, Minh Tran, Jonathan Kua, Thuong Hoang, Man Dien","doi":"10.1016/j.jii.2024.100743","DOIUrl":null,"url":null,"abstract":"This paper presents a human-centric mixed reality (MR) collaborative training platform that employs a kinesthetic learning technique in industrial robotic training, specifically focusing on robot pick–and–place (RPP) operations. Collaborating with ABB Robotics Vietnam, we conducted a user study to investigate the user experiences and practical perceptions of university students and novice trainees via the human–centric training assessment. The study compares the traditional training (TT) RPP classroom as a conventional method with a new collaborative MR RPP training approach (N = 50). The MR training features a digital twin (DT) of ABB GoFa™ CRB–15000 collaborative robot in an immersive 360° Digital–Objects–Based Augmented Training Environment (360–ATE) using Microsoft HoloLens devices. The research evaluated the impact of MR and DT on human–robot interaction and collaboration, user experience, task performance, knowledge retention, and interpretation, as well as differences in perceptions between the two novice cohorts under each training condition. The primary research question explores “Whether the MR collaborative training platform with DT integration in 360–ATE can serve as an alternative approach for novice students and industrial trainees in RPP operations?”. The findings indicate that MR training is more engaging and effective in enhancing participant safety, confidence, and task performance, which also augments cognitive capabilities. The virtual contents on HoloLens, especially the DT, captured the attention and stimulated active learning abilities. Overall, participants in the MR cohort find the proposed training platform useful and easy to use. The platform has a positive influence on their intention to use similar 360–ATE–assisted training platforms in the future.","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"41 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jii.2024.100743","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a human-centric mixed reality (MR) collaborative training platform that employs a kinesthetic learning technique in industrial robotic training, specifically focusing on robot pick–and–place (RPP) operations. Collaborating with ABB Robotics Vietnam, we conducted a user study to investigate the user experiences and practical perceptions of university students and novice trainees via the human–centric training assessment. The study compares the traditional training (TT) RPP classroom as a conventional method with a new collaborative MR RPP training approach (N = 50). The MR training features a digital twin (DT) of ABB GoFa™ CRB–15000 collaborative robot in an immersive 360° Digital–Objects–Based Augmented Training Environment (360–ATE) using Microsoft HoloLens devices. The research evaluated the impact of MR and DT on human–robot interaction and collaboration, user experience, task performance, knowledge retention, and interpretation, as well as differences in perceptions between the two novice cohorts under each training condition. The primary research question explores “Whether the MR collaborative training platform with DT integration in 360–ATE can serve as an alternative approach for novice students and industrial trainees in RPP operations?”. The findings indicate that MR training is more engaging and effective in enhancing participant safety, confidence, and task performance, which also augments cognitive capabilities. The virtual contents on HoloLens, especially the DT, captured the attention and stimulated active learning abilities. Overall, participants in the MR cohort find the proposed training platform useful and easy to use. The platform has a positive influence on their intention to use similar 360–ATE–assisted training platforms in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在以人为本的工业系统中,利用动觉学习和数字孪生赋予机器人培训能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
期刊最新文献
The impact of generative AI on management innovation Digital twin-enabled multi-robot system for collaborative assembly of unorganized parts A comprehensive analysis of multi-strategic RIME algorithm for UAV path planning in varied terrains Towards cognitive intelligence-enabled product design: The evolution, state-of-the-art, and future of AI-enabled product design A blockchain-enabled horizontal federated learning system for fuzzy invasion detection in maintaining space security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1