Zhaohong Liu, Xiaolong Zhang, Paramasivam Sivaguru, Xihe Bi
{"title":"Triftosylhydrazone in Single-Atom Skeletal Editing","authors":"Zhaohong Liu, Xiaolong Zhang, Paramasivam Sivaguru, Xihe Bi","doi":"10.1021/acs.accounts.4c00709","DOIUrl":null,"url":null,"abstract":"In the past decade, single-atom skeletal editing, which involves the precise insertion, deletion, or exchange of single atoms in the core skeleton of a molecule, has emerged as a promising synthetic strategy for the rapid construction or diversification of complex molecules without laborious <i>de novo</i> synthetic processes. Among them, carbene-initiated skeletal editing is particularly appealing due to the ready availability and diverse reactivities of carbene species. The initial endeavors to modify the core skeleton of heteroarenes through carbon-atom insertion could date back to 1881, when Ciamician and Denstedt described the conversion of pyrroles to pyridines by trapping haloform-derived free carbene. Despite its potential synthetic value, the general applicability of this one-carbon insertion has seen limited progress due to poor yields and harsh reaction conditions. Significant advances in skeletal editing via carbene insertion were achieved only in the past 3 years by Levin, Ball, Xu, Song, Glorius, and others. The hallmark of these approaches is facile halocyclopropanation followed by regioselective ring opening facilitated by the expulsion of the halide ion. Consequently, only specially designed α-halocarbene precursors, such as haloform derivatives, α-halodiazoacetates, chlorodiazirines, and α-chlorodiazo oxime esters, can be employed to achieve Ciamician–Denstedt-type skeletal editing. This not only limits the types of functional groups installed on the ring expansion products but also prevents their widespread adoption, especially in late-stage contexts. The enduring quest to develop environmentally friendly and versatile carbene precursors, superior functional group compatibility, and potential application in late-stage diversifications and the investigation of mechanistic insights into carbon insertion reactions remain a fundamental objective.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"192 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00709","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the past decade, single-atom skeletal editing, which involves the precise insertion, deletion, or exchange of single atoms in the core skeleton of a molecule, has emerged as a promising synthetic strategy for the rapid construction or diversification of complex molecules without laborious de novo synthetic processes. Among them, carbene-initiated skeletal editing is particularly appealing due to the ready availability and diverse reactivities of carbene species. The initial endeavors to modify the core skeleton of heteroarenes through carbon-atom insertion could date back to 1881, when Ciamician and Denstedt described the conversion of pyrroles to pyridines by trapping haloform-derived free carbene. Despite its potential synthetic value, the general applicability of this one-carbon insertion has seen limited progress due to poor yields and harsh reaction conditions. Significant advances in skeletal editing via carbene insertion were achieved only in the past 3 years by Levin, Ball, Xu, Song, Glorius, and others. The hallmark of these approaches is facile halocyclopropanation followed by regioselective ring opening facilitated by the expulsion of the halide ion. Consequently, only specially designed α-halocarbene precursors, such as haloform derivatives, α-halodiazoacetates, chlorodiazirines, and α-chlorodiazo oxime esters, can be employed to achieve Ciamician–Denstedt-type skeletal editing. This not only limits the types of functional groups installed on the ring expansion products but also prevents their widespread adoption, especially in late-stage contexts. The enduring quest to develop environmentally friendly and versatile carbene precursors, superior functional group compatibility, and potential application in late-stage diversifications and the investigation of mechanistic insights into carbon insertion reactions remain a fundamental objective.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.