Automatic SAR-based rapeseed mapping in all terrain and weather conditions using dual-aspect Sentinel-1 time series

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-12-16 DOI:10.1016/j.rse.2024.114567
Shuai Xu, Xiaolin Zhu, Ruyin Cao, Jin Chen, Xiaoli Ding
{"title":"Automatic SAR-based rapeseed mapping in all terrain and weather conditions using dual-aspect Sentinel-1 time series","authors":"Shuai Xu, Xiaolin Zhu, Ruyin Cao, Jin Chen, Xiaoli Ding","doi":"10.1016/j.rse.2024.114567","DOIUrl":null,"url":null,"abstract":"Timely and reliable rapeseed mapping is crucial for vegetable oil supply and bioenergy industry. Synthetic Aperture Radar (SAR) remote sensing is able to track rapeseed phenology and map rapeseed fields in cloudy regions. However, SAR-based rapeseed mapping is challenging in mountainous areas due to the highly fragmented farming land and terrain-induced distortions on SAR signals. To address this challenge, this study proposed a novel SAR-based automatic rapeseed mapping (SARM) method for all terrain and weather conditions. SARM first composites high-quality dual-aspect Sentinel-1 time series by combining ascending and descending orbits and smoothing temporal noises. Second, SARM embeds a novel terrain-adjustment modeling to mitigate confounding terrain effects on the SAR intensity of sloped pixels. Third, SARM quantifies unique shape and intensity features of SAR signals during the leaf-flower-pod period to estimate the probability of rapeseed cultivation with the aid of automatically extracted local high-confidence rapeseed pixels. SARM was tested at three sites with varying topographic conditions, rapeseed phenology and cultivation systems. Results demonstrate that SARM achieved accurate rapeseed mapping with the overall accuracy 0.9 or higher, and F1 score 0.85 or higher at all three sites. Compared with the existing rapeseed mapping methods, SARM excelled in mapping fragmented rapeseed fields in both flat and sloped terrains. SARM utilizes unique and universal SAR time-series features of rapeseed growth without relying on any prior knowledge or pre-collected training samples, making it flexible and robust for cross-regional rapeseed mapping, especially for cloudy and mountainous regions where optical data is often contaminated by clouds during rapeseed growing stages.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"28 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114567","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Timely and reliable rapeseed mapping is crucial for vegetable oil supply and bioenergy industry. Synthetic Aperture Radar (SAR) remote sensing is able to track rapeseed phenology and map rapeseed fields in cloudy regions. However, SAR-based rapeseed mapping is challenging in mountainous areas due to the highly fragmented farming land and terrain-induced distortions on SAR signals. To address this challenge, this study proposed a novel SAR-based automatic rapeseed mapping (SARM) method for all terrain and weather conditions. SARM first composites high-quality dual-aspect Sentinel-1 time series by combining ascending and descending orbits and smoothing temporal noises. Second, SARM embeds a novel terrain-adjustment modeling to mitigate confounding terrain effects on the SAR intensity of sloped pixels. Third, SARM quantifies unique shape and intensity features of SAR signals during the leaf-flower-pod period to estimate the probability of rapeseed cultivation with the aid of automatically extracted local high-confidence rapeseed pixels. SARM was tested at three sites with varying topographic conditions, rapeseed phenology and cultivation systems. Results demonstrate that SARM achieved accurate rapeseed mapping with the overall accuracy 0.9 or higher, and F1 score 0.85 or higher at all three sites. Compared with the existing rapeseed mapping methods, SARM excelled in mapping fragmented rapeseed fields in both flat and sloped terrains. SARM utilizes unique and universal SAR time-series features of rapeseed growth without relying on any prior knowledge or pre-collected training samples, making it flexible and robust for cross-regional rapeseed mapping, especially for cloudy and mountainous regions where optical data is often contaminated by clouds during rapeseed growing stages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用双光谱 Sentinel-1 时间序列在各种地形和天气条件下自动绘制基于合成孔径雷达的油菜籽地图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Ground surface displacement measurement from SAR imagery using deep learning Coupled hydrologic-electromagnetic framework to model permafrost active layer organic soil dielectric properties Joint mapping of melt pond bathymetry and water volume on sea ice using optical remote sensing images and physical reflectance models Quantitative characterization of global nighttime light: A method for measuring energy intensity based on radiant flux and SNPP-VIIRS data A flexible framework for built-up height mapping using ICESat-2 photons and multisource satellite observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1