Evolution of Web API Cooperation Network via Exploring Community Structure and Popularity

Guosheng Kang;Yang Wang;Jianxun Liu;Buqing Cao;Yong Xiao;Yu Xu
{"title":"Evolution of Web API Cooperation Network via Exploring Community Structure and Popularity","authors":"Guosheng Kang;Yang Wang;Jianxun Liu;Buqing Cao;Yong Xiao;Yu Xu","doi":"10.1109/TAI.2024.3472614","DOIUrl":null,"url":null,"abstract":"With the growing popularity of the Internet, Web applications have become increasingly essential in our daily lives. Web application programming interfaces (Web APIs) play a crucial role in facilitating interaction between applications. However, most Web service platforms are suffering from the imbalance of Web services now, many services of good quality but low popularity are difficult to be invoked even once and do not create direct connections with the users. Some graph-based Web service recommendation methods also often present a long-tailed distribution of recommended Web services due to limited Mashup–API invocation relationships. To relieve this problem and promote service recommendation, in this article, we propose a community structure and popularity-based approach by constructing an evolving cooperation network for Web APIs. We leverage the Louvain algorithm in community detection to assign community structure to each Web API and consider both the popularity and community structure in constructing the network. By optimizing the Barabάsi–Albert (BA) evolving network model, we demonstrate that our approach outperforms the BA, Bianconi–Barabάsi (BB), and popularity-similarity optimization (PSO) models in Web service clustering. Based on our proposed evolutionary network model for the evolutionary extension of API cooperation network and used for downstream Web service recommendation tasks, the experimental results also show that our recommended approach outperforms some other baseline models for Web service recommendation.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6659-6671"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10704598/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing popularity of the Internet, Web applications have become increasingly essential in our daily lives. Web application programming interfaces (Web APIs) play a crucial role in facilitating interaction between applications. However, most Web service platforms are suffering from the imbalance of Web services now, many services of good quality but low popularity are difficult to be invoked even once and do not create direct connections with the users. Some graph-based Web service recommendation methods also often present a long-tailed distribution of recommended Web services due to limited Mashup–API invocation relationships. To relieve this problem and promote service recommendation, in this article, we propose a community structure and popularity-based approach by constructing an evolving cooperation network for Web APIs. We leverage the Louvain algorithm in community detection to assign community structure to each Web API and consider both the popularity and community structure in constructing the network. By optimizing the Barabάsi–Albert (BA) evolving network model, we demonstrate that our approach outperforms the BA, Bianconi–Barabάsi (BB), and popularity-similarity optimization (PSO) models in Web service clustering. Based on our proposed evolutionary network model for the evolutionary extension of API cooperation network and used for downstream Web service recommendation tasks, the experimental results also show that our recommended approach outperforms some other baseline models for Web service recommendation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1