Towards Better Accuracy-Efficiency Trade-Offs: Dynamic Activity Inference via Collaborative Learning From Various Width-Resolution Configurations

Lutong Qin;Lei Zhang;Chengrun Li;Chaoda Song;Dongzhou Cheng;Shuoyuan Wang;Hao Wu;Aiguo Song
{"title":"Towards Better Accuracy-Efficiency Trade-Offs: Dynamic Activity Inference via Collaborative Learning From Various Width-Resolution Configurations","authors":"Lutong Qin;Lei Zhang;Chengrun Li;Chaoda Song;Dongzhou Cheng;Shuoyuan Wang;Hao Wu;Aiguo Song","doi":"10.1109/TAI.2024.3489532","DOIUrl":null,"url":null,"abstract":"Recently, deep neural networks have triumphed over a large variety of human activity recognition (HAR) applications on resource-constrained mobile devices. However, most existing works are static and ignore the fact that the computational budget usually changes drastically across various devices, which prevent real-world HAR deployment. It still remains a major challenge: how to adaptively and instantly tradeoff accuracy and latency at runtime for on-device activity inference using time series sensor data? To address this issue, this article introduces a new collaborative learning scheme by training a set of subnetworks executed at varying network widths when fueled with different sensor input resolutions as data augmentation, which can instantly switch on-the-fly at different width-resolution configurations for flexible and dynamic activity inference under varying resource budgets. Particularly, it offers a promising performance-boosting solution by utilizing self-distillation to transfer the unique knowledge among multiple width-resolution configuration, which can capture stronger feature representations for activity recognition. Extensive experiments and ablation studies on three public HAR benchmark datasets validate the effectiveness and efficiency of our approach. A real implementation is evaluated on a mobile device. This discovery opens up the possibility to directly access accuracy-latency spectrum of deep learning models in versatile real-world HAR deployments. Code is available at \n<uri>https://github.com/Lutong-Qin/Collaborative_HAR</uri>\n.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6723-6738"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10742433/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, deep neural networks have triumphed over a large variety of human activity recognition (HAR) applications on resource-constrained mobile devices. However, most existing works are static and ignore the fact that the computational budget usually changes drastically across various devices, which prevent real-world HAR deployment. It still remains a major challenge: how to adaptively and instantly tradeoff accuracy and latency at runtime for on-device activity inference using time series sensor data? To address this issue, this article introduces a new collaborative learning scheme by training a set of subnetworks executed at varying network widths when fueled with different sensor input resolutions as data augmentation, which can instantly switch on-the-fly at different width-resolution configurations for flexible and dynamic activity inference under varying resource budgets. Particularly, it offers a promising performance-boosting solution by utilizing self-distillation to transfer the unique knowledge among multiple width-resolution configuration, which can capture stronger feature representations for activity recognition. Extensive experiments and ablation studies on three public HAR benchmark datasets validate the effectiveness and efficiency of our approach. A real implementation is evaluated on a mobile device. This discovery opens up the possibility to directly access accuracy-latency spectrum of deep learning models in versatile real-world HAR deployments. Code is available at https://github.com/Lutong-Qin/Collaborative_HAR .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最近,深度神经网络在资源受限的移动设备上的各种人类活动识别(HAR)应用中大放异彩。然而,现有的大多数作品都是静态的,忽略了计算预算通常会在不同设备上发生巨大变化这一事实,从而阻碍了真实世界中的人类活动识别部署。如何在运行时利用时间序列传感器数据自适应地即时权衡设备上活动推理的准确性和延迟,仍然是一个重大挑战。为了解决这个问题,本文介绍了一种新的协作学习方案,即在使用不同传感器输入分辨率作为数据增强时,通过训练一组以不同网络宽度执行的子网络,在不同的宽度分辨率配置下即时切换,从而在不同的资源预算下实现灵活、动态的活动推断。特别是,它提供了一种很有前景的性能提升解决方案,利用自蒸发功能在多种宽度分辨率配置之间转移独特的知识,从而为活动识别捕捉到更强的特征表征。在三个公共 HAR 基准数据集上进行的广泛实验和消融研究验证了我们方法的有效性和效率。我们还在移动设备上评估了实际实施情况。这一发现为在多用途真实 HAR 部署中直接获取深度学习模型的准确性-延迟谱提供了可能性。代码见 https://github.com/Lutong-Qin/Collaborative_HAR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1