SGDet3D: Semantics and Geometry Fusion for 3D Object Detection Using 4D Radar and Camera

IF 5.3 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-12-09 DOI:10.1109/LRA.2024.3513041
Xiaokai Bai;Zhu Yu;Lianqing Zheng;Xiaohan Zhang;Zili Zhou;Xue Zhang;Fang Wang;Jie Bai;Hui-Liang Shen
{"title":"SGDet3D: Semantics and Geometry Fusion for 3D Object Detection Using 4D Radar and Camera","authors":"Xiaokai Bai;Zhu Yu;Lianqing Zheng;Xiaohan Zhang;Zili Zhou;Xue Zhang;Fang Wang;Jie Bai;Hui-Liang Shen","doi":"10.1109/LRA.2024.3513041","DOIUrl":null,"url":null,"abstract":"4D millimeter-wave radar has gained attention as an emerging sensor for autonomous driving in recent years. However, existing 4D radar and camera fusion models often fail to fully exploit complementary information within each modality and lack deep cross-modal interactions. To address these issues, we propose a novel 4D radar and camera fusion method, named SGDet3D, for 3D object detection. Specifically, we first introduce a dual-branch fusion module that employs geometric depth completion and semantic radar PillarNet to comprehensively leverage geometric and semantic information within each modality. Then we introduce an object-oriented attention module that employs localization-aware cross-attention to facilitate deep interactions across modalites by allowing queries in bird's-eye view (BEV) to attend to interested image tokens. We validate our SGDet3D on the TJ4DRadSet and View-of-Delft (VoD) datasets. Experimental results demonstrate that SGDet3D effectively fuses 4D radar data and camera image and achieves state-of-the-art performance.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"828-835"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10783046/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

4D millimeter-wave radar has gained attention as an emerging sensor for autonomous driving in recent years. However, existing 4D radar and camera fusion models often fail to fully exploit complementary information within each modality and lack deep cross-modal interactions. To address these issues, we propose a novel 4D radar and camera fusion method, named SGDet3D, for 3D object detection. Specifically, we first introduce a dual-branch fusion module that employs geometric depth completion and semantic radar PillarNet to comprehensively leverage geometric and semantic information within each modality. Then we introduce an object-oriented attention module that employs localization-aware cross-attention to facilitate deep interactions across modalites by allowing queries in bird's-eye view (BEV) to attend to interested image tokens. We validate our SGDet3D on the TJ4DRadSet and View-of-Delft (VoD) datasets. Experimental results demonstrate that SGDet3D effectively fuses 4D radar data and camera image and achieves state-of-the-art performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SGDet3D:使用4D雷达和相机进行3D物体检测的语义和几何融合
四维毫米波雷达作为一种新兴的自动驾驶传感器,近年来备受关注。然而,现有的四维雷达和相机融合模型往往不能充分利用每个模态内的互补信息,缺乏深度的跨模态交互。为了解决这些问题,我们提出了一种新的四维雷达和相机融合方法,称为SGDet3D,用于三维目标检测。具体来说,我们首先介绍了一个双分支融合模块,该模块采用几何深度完成和语义雷达PillarNet来综合利用每个模态中的几何和语义信息。然后,我们引入了一个面向对象的注意力模块,该模块通过允许鸟瞰视图(BEV)中的查询关注感兴趣的图像标记,采用定位感知交叉注意力来促进跨模态的深度交互。我们在TJ4DRadSet和View-of-Delft (VoD)数据集上验证了SGDet3D。实验结果表明,SGDet3D有效地融合了四维雷达数据和相机图像,达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Distributed Model Predictive Control for Energy and Comfort Optimization in Large Buildings Using Piecewise Affine Approximation Equi-RO: A 4D mmWave Radar Odometry via Equivariant Networks Close-Fitting Dressing Assistance Based on State Estimation of Feet and Garments With Semantic-Based Visual Attention MDF-Net: A Misclassified Data Fusion Network for Locomotion Mode Misclassification Detection and Correction in Lower-Limb Exoskeletons GPR-Net: Geometric-Positional Collaborative Point Cloud Registration Network for Repetitive Geometric Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1