Optimization of carbon transport and growth rates in top-seeded solution growth of Al-doped SiC

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-11-21 DOI:10.1039/D4CE00931B
Zhouyu Tong, Xuefeng Han, Yuanchao Huang, Binjie Xu, Yanwei Yang, Deren Yang and Xiaodong Pi
{"title":"Optimization of carbon transport and growth rates in top-seeded solution growth of Al-doped SiC","authors":"Zhouyu Tong, Xuefeng Han, Yuanchao Huang, Binjie Xu, Yanwei Yang, Deren Yang and Xiaodong Pi","doi":"10.1039/D4CE00931B","DOIUrl":null,"url":null,"abstract":"<p >The top-seeded solution growth (TSSG) method is an emerging technique for the production of silicon carbide (SiC). Due to its advantage of lower growth temperature compared to the physical vapor transport method, it holds significant potential in the preparation of Al-doped SiC. In this study, a global numerical model calculating heat and mass transfer was established to investigate the impact of solution radius and height, coil position, and rotational speed of the seed crystal on the flow pattern and carbon transport. The results indicated that a meticulous determination of these growth parameters could enhance both carbon transport and growth rate. Furthermore, abundant transient calculation results were utilized to train back-propagation (BP) neural networks to extract the correlation between growth parameters, growth rate, and Al concentration. The optimal parameters were ultimately obtained using the non-dominated sorting genetic algorithm (NSGA-II). The Al concentration calculated in the solution under the optimal growth conditions demonstrated that the evaporation of Al was sufficiently low to satisfy the p-type doping requirement. This study provides valuable insights for the future development of a TSSG system tailored for the rapid growth of Al-doped SiC.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 1","pages":" 90-101"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce00931b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The top-seeded solution growth (TSSG) method is an emerging technique for the production of silicon carbide (SiC). Due to its advantage of lower growth temperature compared to the physical vapor transport method, it holds significant potential in the preparation of Al-doped SiC. In this study, a global numerical model calculating heat and mass transfer was established to investigate the impact of solution radius and height, coil position, and rotational speed of the seed crystal on the flow pattern and carbon transport. The results indicated that a meticulous determination of these growth parameters could enhance both carbon transport and growth rate. Furthermore, abundant transient calculation results were utilized to train back-propagation (BP) neural networks to extract the correlation between growth parameters, growth rate, and Al concentration. The optimal parameters were ultimately obtained using the non-dominated sorting genetic algorithm (NSGA-II). The Al concentration calculated in the solution under the optimal growth conditions demonstrated that the evaporation of Al was sufficiently low to satisfy the p-type doping requirement. This study provides valuable insights for the future development of a TSSG system tailored for the rapid growth of Al-doped SiC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化掺铝碳化硅顶籽溶液生长过程中的碳传输和生长速率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover Correction: Revealing the supramolecular features of two Zn(ii) complexes derived from a new hydrazone ligand: a combined crystallographic, theoretical and antibacterial study Correction: Influence of cobalt on the performance of Pt/CeO2 for CO-PROX at low temperature: reducing the energy of the Pt–O–Ce bond Chiral resolution of dl-leucine via salifying tartaric acid derivatives†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1