Perturbation effect of solar radiation pressure on the Sun-Earth co-orbital motion

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astrophysics and Space Science Pub Date : 2024-12-16 DOI:10.1007/s10509-024-04387-3
Mingxu Zhao, Yi Qi, Dong Qiao
{"title":"Perturbation effect of solar radiation pressure on the Sun-Earth co-orbital motion","authors":"Mingxu Zhao,&nbsp;Yi Qi,&nbsp;Dong Qiao","doi":"10.1007/s10509-024-04387-3","DOIUrl":null,"url":null,"abstract":"<div><p>Sun-Earth co-orbital motions have an important value in deep space explorations due to their unique orbital characteristics and spatial configurations. In this paper, we investigate the influence of the solar radiation pressure (SRP) on the Sun-Earth co-orbital motion. Firstly, we derive several analytical formulas of the effect of the SRP on orbital elements. Then, based on the analytical results, the orbital variables of perturbed distant retrograde orbits (DROs) and perturbed tadpole (TP) orbits around triangular libration points are studied, and the validity of those conclusions is demonstrated by numerical integration. Finally, we derive an approximate expression to analyze the drift trend of triangular libration points under the SRP and explain the drift phenomena of libration centers of perturbed co-orbital motions. The conclusions obtained in this paper could be used to design control laws of the perturbed Sun-Earth co-orbital motion in the future.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04387-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sun-Earth co-orbital motions have an important value in deep space explorations due to their unique orbital characteristics and spatial configurations. In this paper, we investigate the influence of the solar radiation pressure (SRP) on the Sun-Earth co-orbital motion. Firstly, we derive several analytical formulas of the effect of the SRP on orbital elements. Then, based on the analytical results, the orbital variables of perturbed distant retrograde orbits (DROs) and perturbed tadpole (TP) orbits around triangular libration points are studied, and the validity of those conclusions is demonstrated by numerical integration. Finally, we derive an approximate expression to analyze the drift trend of triangular libration points under the SRP and explain the drift phenomena of libration centers of perturbed co-orbital motions. The conclusions obtained in this paper could be used to design control laws of the perturbed Sun-Earth co-orbital motion in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳辐射压力对日地同轨道运动的扰动效应
日地共轨运动由于其独特的轨道特性和空间结构,在深空探测中具有重要的应用价值。本文研究了太阳辐射压力(SRP)对日地共轨运动的影响。首先,我们推导了SRP对轨道要素影响的几个解析公式。在此基础上,研究了绕三角形振动点的扰动远逆行轨道(DROs)和扰动蝌蚪轨道(TP)的轨道变量,并通过数值积分验证了上述结论的有效性。最后,导出了一个近似表达式,分析了SRP作用下三角振动点的漂移趋势,并解释了摄动共轨道运动的振动中心漂移现象。本文所得结论可用于未来设计摄动日地共轨运动的控制规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
期刊最新文献
Spectral study of sample of GeV emission gamma-ray bursts with quiescent episodes Towards cosmological inference on unlabeled out-of-distribution HI observational data Spectroscopic diagnosis of a B-class flare and an associated filament eruption Solar orbiter: a short review of the mission and early science results Mergers of compact objects with cores of massive stars: evolutionary pathways, r-process nucleosynthesis and multi-messenger signatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1