Synthesis and Evaluation of NH2 and SH Linker Free Benzothiazole-Triazole Compounds: Insights into Antimicrobial Efficacy

IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Russian Journal of Bioorganic Chemistry Pub Date : 2024-12-16 DOI:10.1134/S1068162024060141
Aamir R. Shama, Mehulkumar L. Savaliya, Snehal Lokhandwala
{"title":"Synthesis and Evaluation of NH2 and SH Linker Free Benzothiazole-Triazole Compounds: Insights into Antimicrobial Efficacy","authors":"Aamir R. Shama,&nbsp;Mehulkumar L. Savaliya,&nbsp;Snehal Lokhandwala","doi":"10.1134/S1068162024060141","DOIUrl":null,"url":null,"abstract":"<p><b>Objective:</b> To evaluate the antimicrobial effectiveness of a novel 5-(1,3-benzothiazol-2-yl)-4-[(<i>E</i>)-(phenylmethylidene)amino]-4<i>H</i>-1,2,4-triazole-3-thiol derivatives. <b>Methods:</b> Starting from 2-aminothiophenol, a series of novel benzothiazole tethered triazole compounds were synthesized using conventional multi-step reactions. The reaction conditions were optimized for yield. Characterization was performed using <sup>1</sup>H, <sup>13</sup>C NMR, IR, and mass spectrometry. To determine the antimicrobial activity, both the agar well diffusion method and micro broth dilution method were employed. Molecular docking was conducted with AutoDock Vina, and ADME analysis was performed using SwissADME. The evaluation of toxicity was carried out using ADMETlab 2.0. <b>Results and Discussion:</b> Compound with a 2-NO<sub>2</sub> substitution showed potent antibacterial activity against <i>E. coli</i>, with an inhibition of 50 µg/mL, similar to the standard drug chloramphenicol. The derivatives containing 3-Br and thiophene substitutions exhibited excellent activity against <i>P. aeruginosa</i>, with an inhibition concentration of 50 µg/mL. Moreover, the compounds with substitutions of 4-Br, 2,4-F, 4-F, and thiophene showed notable antifungal activity against <i>C. albicans</i> at a concentration of 250 µg/mL, surpassing the effectiveness of the standard drug griseofulvin. The results of molecular docking indicated that the compounds possessing 2-NO<sub>2</sub>, 3-Br, and 2,4-F substitutions displayed the most potent binding affinities towards their target proteins. The ADMET properties of these compounds were thoroughly evaluated and confirmed their drug-like characteristics and pharmacokinetic viability. <b>Conclusions:</b> The results of the antimicrobial activity assays and molecular docking studies indicate that several of the synthesized compounds demonstrated potency equal to or exceeding that of standard drugs. Furthermore, the ADMET profiles of these compounds were favourable, suggesting good pharmacokinetic properties. These findings highlight the potential of the synthesized compounds as effective antimicrobial agents, warranting further investigation and development.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2344 - 2365"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1068162024060141","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To evaluate the antimicrobial effectiveness of a novel 5-(1,3-benzothiazol-2-yl)-4-[(E)-(phenylmethylidene)amino]-4H-1,2,4-triazole-3-thiol derivatives. Methods: Starting from 2-aminothiophenol, a series of novel benzothiazole tethered triazole compounds were synthesized using conventional multi-step reactions. The reaction conditions were optimized for yield. Characterization was performed using 1H, 13C NMR, IR, and mass spectrometry. To determine the antimicrobial activity, both the agar well diffusion method and micro broth dilution method were employed. Molecular docking was conducted with AutoDock Vina, and ADME analysis was performed using SwissADME. The evaluation of toxicity was carried out using ADMETlab 2.0. Results and Discussion: Compound with a 2-NO2 substitution showed potent antibacterial activity against E. coli, with an inhibition of 50 µg/mL, similar to the standard drug chloramphenicol. The derivatives containing 3-Br and thiophene substitutions exhibited excellent activity against P. aeruginosa, with an inhibition concentration of 50 µg/mL. Moreover, the compounds with substitutions of 4-Br, 2,4-F, 4-F, and thiophene showed notable antifungal activity against C. albicans at a concentration of 250 µg/mL, surpassing the effectiveness of the standard drug griseofulvin. The results of molecular docking indicated that the compounds possessing 2-NO2, 3-Br, and 2,4-F substitutions displayed the most potent binding affinities towards their target proteins. The ADMET properties of these compounds were thoroughly evaluated and confirmed their drug-like characteristics and pharmacokinetic viability. Conclusions: The results of the antimicrobial activity assays and molecular docking studies indicate that several of the synthesized compounds demonstrated potency equal to or exceeding that of standard drugs. Furthermore, the ADMET profiles of these compounds were favourable, suggesting good pharmacokinetic properties. These findings highlight the potential of the synthesized compounds as effective antimicrobial agents, warranting further investigation and development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Bioorganic Chemistry
Russian Journal of Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
1.80
自引率
10.00%
发文量
118
审稿时长
3 months
期刊介绍: Russian Journal of Bioorganic Chemistry publishes reviews and original experimental and theoretical studies on the structure, function, structure–activity relationships, and synthesis of biopolymers, such as proteins, nucleic acids, polysaccharides, mixed biopolymers, and their complexes, and low-molecular-weight biologically active compounds (peptides, sugars, lipids, antibiotics, etc.). The journal also covers selected aspects of neuro- and immunochemistry, biotechnology, and ecology.
期刊最新文献
Molecular Biological Approaches to Human Oocyte Developmental Competence Prognosis Adaptation of the Protocol of the Automated Solid-Phase Phosphoramidite Synthesis of Oligodeoxyribonucleotides for Preparing Their N-Unsubstituted Phosphoramidate Analogs (P–NH2) Acute Toxicity Evaluation of Pyridine Derivatives of 3,4-Dihydroquinoxalin-2-one and 3,4-Dihydro-2H-1,4-benzoxazin-2-one Non-Agglomerated Oligonucleotide-Containing Nanocomposites Based on Titanium Dioxide Nanoparticles Expression of the Extracellular Domain of Mouse PD-L1 and Production of Antibodies to PD-L1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1