NCAP: Noncanonical Amino Acid Parameterization Software for CHARMM Potentials.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-12-10 DOI:10.1021/acs.jcim.4c00986
Richard E Overstreet, Dennis G Thomas, John R Cort
{"title":"NCAP: Noncanonical Amino Acid Parameterization Software for CHARMM Potentials.","authors":"Richard E Overstreet, Dennis G Thomas, John R Cort","doi":"10.1021/acs.jcim.4c00986","DOIUrl":null,"url":null,"abstract":"<p><p>Noncanonical amino acids (ncAAs) provide numerous avenues for the introduction of novel functionality to peptides and proteins. ncAAs can be incorporated through solid-phase synthesis or genetic code expansion in conjugation with heterologous expression of the encoded protein modification. Due to the difficulty of synthesis or overexpression, wide chemical space, and lack of empirically resolved structures, modeling the effects of ncAA mutation is critical for rational protein design. To evaluate the structural and functional perturbations ncAAs introduce, we utilize molecular potentials that describe the forces in the protein structure. Most potentials such as CHARMM are designed to model canonical residues but can be parametrized to include novel ncAAs. In this work, we introduce NCAP, a software package to generate CHARMM-compatible parameters from quantum chemical calculations. Unlike currently available tools, NCAP is designed to recognize the ncAA structure and automatically bridge the gap between quantum chemical calculations and CHARMM potential parameters. For our software, we discuss the workflow, validation against canonical parameter sets, and comparison with published ncAA-protein structures.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c00986","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Noncanonical amino acids (ncAAs) provide numerous avenues for the introduction of novel functionality to peptides and proteins. ncAAs can be incorporated through solid-phase synthesis or genetic code expansion in conjugation with heterologous expression of the encoded protein modification. Due to the difficulty of synthesis or overexpression, wide chemical space, and lack of empirically resolved structures, modeling the effects of ncAA mutation is critical for rational protein design. To evaluate the structural and functional perturbations ncAAs introduce, we utilize molecular potentials that describe the forces in the protein structure. Most potentials such as CHARMM are designed to model canonical residues but can be parametrized to include novel ncAAs. In this work, we introduce NCAP, a software package to generate CHARMM-compatible parameters from quantum chemical calculations. Unlike currently available tools, NCAP is designed to recognize the ncAA structure and automatically bridge the gap between quantum chemical calculations and CHARMM potential parameters. For our software, we discuss the workflow, validation against canonical parameter sets, and comparison with published ncAA-protein structures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NCAP:用于 CHARMM 电位的非正则氨基酸参数化软件。
非典型氨基酸(ncAAs)为肽和蛋白质引入新功能提供了多种途径。ncAAs 可通过固相合成或遗传密码扩增与编码蛋白质修饰的异源表达结合在一起。由于合成或过表达困难、化学空间广阔以及缺乏经验解析的结构,建立 ncAA 突变影响的模型对于合理设计蛋白质至关重要。为了评估 ncAA 带来的结构和功能扰动,我们利用分子势来描述蛋白质结构中的作用力。大多数分子势(如 CHARMM)都是为模拟典型残基而设计的,但也可通过参数化将新型 ncAA 包括在内。在这项工作中,我们介绍了 NCAP,这是一个通过量子化学计算生成 CHARMM 兼容参数的软件包。与目前可用的工具不同,NCAP 设计用于识别 ncAA 结构,并自动弥合量子化学计算与 CHARMM 势参数之间的差距。对于我们的软件,我们将讨论其工作流程、与标准参数集的验证以及与已发表的 ncAA 蛋白结构的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Essential Considerations for Free Energy Calculations of RNA-Small Molecule Complexes: Lessons from the Theophylline-Binding RNA Aptamer. MGT: Machine Learning Accelerates Performance Prediction of Alloy Catalytic Materials. EvaluationMaster: A GUI Tool for Structure-Based Virtual Screening Evaluation Analysis and Decision-Making Support. DiffInt: A Diffusion Model for Structure-Based Drug Design with Explicit Hydrogen Bond Interaction Guidance. Ligand Binding and Functional Effect of Novel Bicyclic α5 GABAA Receptor Negative Allosteric Modulators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1