Quantitative and rapid lateral flow immunoassay for cardiac troponin I using dendritic mesoporous silica nanoparticles and gold nanoparticles.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analytical Methods Pub Date : 2024-12-16 DOI:10.1039/d4ay02060j
Yafei Li, Yu Yao, Qingqing Hua, Jishun Li
{"title":"Quantitative and rapid lateral flow immunoassay for cardiac troponin I using dendritic mesoporous silica nanoparticles and gold nanoparticles.","authors":"Yafei Li, Yu Yao, Qingqing Hua, Jishun Li","doi":"10.1039/d4ay02060j","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) is considered to be one of the predominant causes of human death; therefore, a rapid and accurate diagnostic method for AMI is urgently required. In this work, a highly sensitive lateral flow immunoassay (LFIA) platform was designed and fabricated for the quantitative determination of cardiac troponin I (cTnI) using a scanner, a smartphone and a colloidal gold immunoassay analyzer. To overcome the limitation of low sensitivity of traditional colloidal gold-based LFIA, three-dimensionally assembled gold nanoparticles (AuNPs) within a dendritic mesoporous silica nanoparticle (DMSN) scaffold were fabricated as signal labels. The assembly structure greatly enhanced the light extinction ability of a single label for signal amplification. The DMSNs@Au-based LFIA strips exhibited excellent detection performance including a high sensitivity (LOD = 70 pg mL<sup>-1</sup>) and wide linear range (0.5-40 ng mL<sup>-1</sup>) and precision with good specificity. The successful determination of cTnI by the test strips provides the ability to diagnose AMI at an early stage and expands the diagnostic window of AMI, while also having advantages such as low cost and user-friendliness. Therefore, we believe that the test strips fabricated in this work have great potential to be applied for practical clinical applications for the early and accurate diagnosis of AMI.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay02060j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acute myocardial infarction (AMI) is considered to be one of the predominant causes of human death; therefore, a rapid and accurate diagnostic method for AMI is urgently required. In this work, a highly sensitive lateral flow immunoassay (LFIA) platform was designed and fabricated for the quantitative determination of cardiac troponin I (cTnI) using a scanner, a smartphone and a colloidal gold immunoassay analyzer. To overcome the limitation of low sensitivity of traditional colloidal gold-based LFIA, three-dimensionally assembled gold nanoparticles (AuNPs) within a dendritic mesoporous silica nanoparticle (DMSN) scaffold were fabricated as signal labels. The assembly structure greatly enhanced the light extinction ability of a single label for signal amplification. The DMSNs@Au-based LFIA strips exhibited excellent detection performance including a high sensitivity (LOD = 70 pg mL-1) and wide linear range (0.5-40 ng mL-1) and precision with good specificity. The successful determination of cTnI by the test strips provides the ability to diagnose AMI at an early stage and expands the diagnostic window of AMI, while also having advantages such as low cost and user-friendliness. Therefore, we believe that the test strips fabricated in this work have great potential to be applied for practical clinical applications for the early and accurate diagnosis of AMI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用树枝状介孔二氧化硅纳米颗粒和金纳米颗粒对心肌肌钙蛋白 I 进行定量和快速横向流动免疫测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
期刊最新文献
In-cell NMR reveals metabolic adaptations in central carbon pathways driving antibiotic tolerance in Salmonella Typhimurium. A novel fluorescent probe for rapid and selective detection of fluoride ions in living cells. Galactose oxidase oxidation and glycosidase digestion for glycoRNA analysis. A novel spectroscopy-deep learning approach for aqueous multi-heavy metal detection. Development of a new method using dispersive liquid-liquid microextraction with hydrophobic natural deep eutectic solvent for the analysis of multiclass emerging contaminants in surface water by liquid chromatography-mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1