Nanoliposomal system for augmented antibacterial and antiproliferative efficacy of Melissa officinalis L. extract.

IF 2.2 4区 医学 Q3 TOXICOLOGY Toxicology Research Pub Date : 2024-12-01 DOI:10.1093/toxres/tfae198
Nagihan Nizam, Gokce Taner, Munevver Muge Cagal
{"title":"Nanoliposomal system for augmented antibacterial and antiproliferative efficacy of <i>Melissa officinalis</i> L. extract.","authors":"Nagihan Nizam, Gokce Taner, Munevver Muge Cagal","doi":"10.1093/toxres/tfae198","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study focused on the nanoliposomal encapsulation of bioactive compounds extracted from <i>Melissa officinalis</i> L. (ME) using ethanol as a strategy to improve the antibacterial activity, anticytotoxic, and antiproliferative properties.</p><p><strong>Methods: </strong>Nanoliposomes loaded with ME (MEL) were characterized for total phenolic content, particle size, polydispersity, and encapsulation efficiency. The minimum inhibitory concentration (MIC) values for MEL and ME were determined to evaluate antibacterial activity. To examine the toxicity profiles of ME and MEL, tests were conducted on the A549 and BEAS-2B cell lines using the MTT assay. Furthermore, an <i>in vitro</i> sctrach assay was conducted to evaluate the antiproliferative effects of ME and MEL on A549 cells.</p><p><strong>Results: </strong>Nanoliposomes presented entrapment efficiency higher than 80%, nanometric particle size, and narrow polydispersity. The MIC values for MEL and ME were observed as 93.75 μg/μL against E. coli. MIC values for MEL and ME were achieved as 4.68 μg/μL and 9.375 μg/mL against S. aureus, respectively. The IC50 values for ME were determined to be 1.13 mg/mL and 0.806 mg/mL, while the IC50 values for MEL were found to be 3.5 mg/mL and 0.868 mg/mL on A549 and BEAS-2B cell lines, respectively. Additionally, The MEL showed an antiproliferative effect against A549 cells at 500 μg/mL concentration.</p><p><strong>Conclusion: </strong>All experimental findings unequivocally demonstrate that the novel nanoliposomal system has effectively augmented the antibacterial activities and antiproliferative effects of ME. The initial findings indicate that nanoliposomes could effectively serve as carriers for ME in pharmaceutical applications.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae198"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae198","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study focused on the nanoliposomal encapsulation of bioactive compounds extracted from Melissa officinalis L. (ME) using ethanol as a strategy to improve the antibacterial activity, anticytotoxic, and antiproliferative properties.

Methods: Nanoliposomes loaded with ME (MEL) were characterized for total phenolic content, particle size, polydispersity, and encapsulation efficiency. The minimum inhibitory concentration (MIC) values for MEL and ME were determined to evaluate antibacterial activity. To examine the toxicity profiles of ME and MEL, tests were conducted on the A549 and BEAS-2B cell lines using the MTT assay. Furthermore, an in vitro sctrach assay was conducted to evaluate the antiproliferative effects of ME and MEL on A549 cells.

Results: Nanoliposomes presented entrapment efficiency higher than 80%, nanometric particle size, and narrow polydispersity. The MIC values for MEL and ME were observed as 93.75 μg/μL against E. coli. MIC values for MEL and ME were achieved as 4.68 μg/μL and 9.375 μg/mL against S. aureus, respectively. The IC50 values for ME were determined to be 1.13 mg/mL and 0.806 mg/mL, while the IC50 values for MEL were found to be 3.5 mg/mL and 0.868 mg/mL on A549 and BEAS-2B cell lines, respectively. Additionally, The MEL showed an antiproliferative effect against A549 cells at 500 μg/mL concentration.

Conclusion: All experimental findings unequivocally demonstrate that the novel nanoliposomal system has effectively augmented the antibacterial activities and antiproliferative effects of ME. The initial findings indicate that nanoliposomes could effectively serve as carriers for ME in pharmaceutical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米脂质体系统增强梅丽莎提取物的抗菌和抗增殖作用。
研究目的本研究的重点是利用乙醇对从 Melissa officinalis L.(ME)中提取的生物活性化合物进行纳米脂质体封装,以提高其抗菌活性、抗毒性和抗增殖特性:方法:研究人员对载入 ME(MEL)的纳米脂质体的总酚含量、粒度、多分散性和封装效率进行了表征。测定了 MEL 和 ME 的最低抑菌浓度 (MIC) 值,以评估其抗菌活性。为了检测 ME 和 MEL 的毒性,使用 MTT 法对 A549 和 BEAS-2B 细胞系进行了测试。此外,还进行了体外 sctrach 试验,以评估 ME 和 MEL 对 A549 细胞的抗增殖作用:结果:纳米脂质体的包载效率高于80%,粒径为纳米级,多分散性较窄。观察到 MEL 和 ME 对大肠杆菌的 MIC 值为 93.75 μg/μL 。MEL 和 ME 对金黄色葡萄球菌的 MIC 值分别为 4.68 μg/μL 和 9.375 μg/mL。在 A549 和 BEAS-2B 细胞系中,ME 的 IC50 值分别为 1.13 毫克/毫升和 0.806 毫克/毫升,而 MEL 的 IC50 值分别为 3.5 毫克/毫升和 0.868 毫克/毫升。此外,在 500 μg/mL 浓度下,MEL 对 A549 细胞有抗增殖作用:所有实验结果都明确表明,新型纳米脂质体系统有效增强了 ME 的抗菌活性和抗增殖作用。初步研究结果表明,纳米脂质体可作为 ME 的载体有效地应用于制药领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
期刊最新文献
Exploring the molecular interface of gene expression dynamics and prostate cancer susceptibility in response to HBCD exposure. Exploring the protective role of Heracleum persicum L. extract in testicular toxicity induced by mercuric chloride: insights into hormonal modulation and cell survival pathways. Dexmedetomidine plays a protective role in sepsis-associated myocardial injury by repressing PRMT5-mediated ferroptosis. Clinical efficacy and safety evaluation of traditional Chinese medicine for nourishing yin and Replenishing qi in combination with PD-1/PD-L1 inhibitors in the treatment of NSCLC patients: a meta-analysis. lncRNA PART1 improves sevoflurane-induced impairments in learning and cognitive function by regulating miR-16-5p expression and reducing neuroinflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1