METTL3-Mediated m6A Methylation of USP21 Contributes to Hepatocellular Carcinoma Progression by Stabilizing H2BFS Through Deubiquitination.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2024-12-16 DOI:10.1007/s10528-024-10992-2
Peng Yao, Xiaozheng Li, Jiasui Chai, Jiejie Dong, Yan Chen, Tong Zhang, Xingren Guo
{"title":"METTL3-Mediated m6A Methylation of USP21 Contributes to Hepatocellular Carcinoma Progression by Stabilizing H2BFS Through Deubiquitination.","authors":"Peng Yao, Xiaozheng Li, Jiasui Chai, Jiejie Dong, Yan Chen, Tong Zhang, Xingren Guo","doi":"10.1007/s10528-024-10992-2","DOIUrl":null,"url":null,"abstract":"<p><p>Deubiquitinases play essential roles in hepatocellular carcinoma (HCC) progression, however, the role of ubiquitin-specific peptidase 21 (USP21) in HCC development remains unclear. The present work aims to analyze the effect of USP21 on tumor property of HCC cells and the underlying mechanism. mRNA expression levels of USP21 and H2BFS were analyzed by quantitative real-time polymerase chain reaction. Protein expression of USP21, E-cadherin, N-cadherin, Vimentin, H2BFS and methyltransferase 3 (METTL3) was assessed by western blotting assay or immunohistochemistry assay. Clonogenicity assay was used to analyze cell proliferation. Flow cytometry assay was performed to quantify apoptotic rate of cells. Wound-healing assay and transwell assay were conducted to analyze cell migration and invasion, respectively. Xenograft mouse model assay was performed to determine the effect of USP21 knockdown on tumor formation. m6A RNA immunoprecipitation assay (MeRIP) was used to analyze the effect of METTL3 silencing on methylated level of USP21. USP21 expression was upregulated in HCC tissues and cells when compared with control groups. USP21 silencing inhibited proliferation, migration and invasion and induced apoptosis of HCC cells, accompanied by the increased E-cadherin protein expression and decreased N-cadherin and Vimentin protein expression. Moreover, USP21 knockdown delayed tumor formation in vivo. USP21 stabilized H2BFS by deubiquitination, and H2BFS overexpression attenuated USP21 silencing-induced effects in HCC cells. Further, METTL3-mediated m6A methylation of USP21. METTL3-mediated m6A methylation of USP21 promoted HCC progression by stabilizing H2BFS through deubiquitination.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10992-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deubiquitinases play essential roles in hepatocellular carcinoma (HCC) progression, however, the role of ubiquitin-specific peptidase 21 (USP21) in HCC development remains unclear. The present work aims to analyze the effect of USP21 on tumor property of HCC cells and the underlying mechanism. mRNA expression levels of USP21 and H2BFS were analyzed by quantitative real-time polymerase chain reaction. Protein expression of USP21, E-cadherin, N-cadherin, Vimentin, H2BFS and methyltransferase 3 (METTL3) was assessed by western blotting assay or immunohistochemistry assay. Clonogenicity assay was used to analyze cell proliferation. Flow cytometry assay was performed to quantify apoptotic rate of cells. Wound-healing assay and transwell assay were conducted to analyze cell migration and invasion, respectively. Xenograft mouse model assay was performed to determine the effect of USP21 knockdown on tumor formation. m6A RNA immunoprecipitation assay (MeRIP) was used to analyze the effect of METTL3 silencing on methylated level of USP21. USP21 expression was upregulated in HCC tissues and cells when compared with control groups. USP21 silencing inhibited proliferation, migration and invasion and induced apoptosis of HCC cells, accompanied by the increased E-cadherin protein expression and decreased N-cadherin and Vimentin protein expression. Moreover, USP21 knockdown delayed tumor formation in vivo. USP21 stabilized H2BFS by deubiquitination, and H2BFS overexpression attenuated USP21 silencing-induced effects in HCC cells. Further, METTL3-mediated m6A methylation of USP21. METTL3-mediated m6A methylation of USP21 promoted HCC progression by stabilizing H2BFS through deubiquitination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mettl3介导的USP21的m6A甲基化通过去泛素化稳定H2BFS有助于肝细胞癌的进展。
去泛素酶在肝细胞癌(HCC)的进展中起重要作用,然而,泛素特异性肽酶21 (USP21)在HCC发展中的作用尚不清楚。本研究旨在分析USP21对HCC细胞肿瘤性质的影响及其机制。采用实时定量聚合酶链反应分析USP21和H2BFS mRNA表达水平。western blotting法和免疫组化法检测USP21、E-cadherin、N-cadherin、Vimentin、H2BFS和甲基转移酶3 (METTL3)蛋白的表达。克隆原性试验分析细胞增殖情况。流式细胞术测定细胞凋亡率。采用创面愈合法和transwell法分别分析细胞迁移和细胞侵袭。采用异种移植小鼠模型实验,研究USP21基因敲低对肿瘤形成的影响。采用m6A RNA免疫沉淀法(MeRIP)分析METTL3沉默对USP21甲基化水平的影响。与对照组相比,USP21在HCC组织和细胞中的表达上调。USP21沉默抑制HCC细胞的增殖、迁移、侵袭,诱导细胞凋亡,同时E-cadherin蛋白表达升高,N-cadherin和Vimentin蛋白表达降低。此外,USP21敲低可延缓体内肿瘤的形成。USP21通过去泛素化作用稳定H2BFS, H2BFS过表达可减弱USP21沉默诱导的HCC细胞效应。此外,mettl3介导USP21的m6A甲基化。mettl3介导的USP21 m6A甲基化通过去泛素化稳定H2BFS促进HCC进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
Mechanism of Curcumin in the Treatment of Intrauterine Adhesions Based on Network Pharmacology, Molecular docking, and Experimental Validation. Oxidative Stress-Related KEAP1 and NRF2 Genes Contributed to the Risk of Epithelial Ovarian Cancer. Amino Acid Metabolism-Related Gene Kynureninase (KYNU) as a Prognostic Predictor and Regulator of Diffuse Large B-Cell Lymphoma. Exploring miR-34a, miR-449, and ADAM2/ADAM7 Expressions as Potential Biomarkers in Male Infertility: A Combined In Silico and Experimental Approach. Association Between ERBB2 and ERBB3 Polymorphisms and Dyslipidaemia and Serum Lipid Levels in a Chinese Population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1