2D Carbon-Anchored Platinum-Based Nanodot Arrays as Efficient Catalysts for Methanol Oxidation Reaction.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-12-16 DOI:10.1002/smtd.202401717
Zhen Xu, Xing Hu, Xiaojie Jiang, Shan Zhu, Kaixiang Lei, Yecan Pi, Kezhu Jiang, Shijian Zheng
{"title":"2D Carbon-Anchored Platinum-Based Nanodot Arrays as Efficient Catalysts for Methanol Oxidation Reaction.","authors":"Zhen Xu, Xing Hu, Xiaojie Jiang, Shan Zhu, Kaixiang Lei, Yecan Pi, Kezhu Jiang, Shijian Zheng","doi":"10.1002/smtd.202401717","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrafine Pt-based alloy nanoparticles supported on carbon substrates have attracted significant attention due to their catalytic potential. Nevertheless, ensuring the stability of these nanoparticles remains a critical challenge, impeding their broad application. In this work, novel nanodot arrays (NAs) are introduced where superfine alloy nanoparticles are uniformly implanted in a 2D carbon substrate and securely anchored. Electrochemical testing of the PtCo NAs demonstrates exceptional methanol oxidation reaction (MOR) activity, achieving 1.25 A mg<sup>-1</sup>. Moreover, the PtCo NAs exhibit outstanding stability throughout the testing period, underscoring the effectiveness of the anchoring mechanism. Comprehensive characterization and theoretical calculations reveal that the 2D carbon-anchored structure optimizes the electronic structure and coordination environment of Pt, restricts nanoparticle migration, and suppresses transition metal dissolution. This strategy represents a major advancement in addressing the stability limitations of ultrafine nanoparticles in catalytic applications and offers broader insights into the design of next-generation catalysts with enhanced durability and performance.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401717"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401717","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafine Pt-based alloy nanoparticles supported on carbon substrates have attracted significant attention due to their catalytic potential. Nevertheless, ensuring the stability of these nanoparticles remains a critical challenge, impeding their broad application. In this work, novel nanodot arrays (NAs) are introduced where superfine alloy nanoparticles are uniformly implanted in a 2D carbon substrate and securely anchored. Electrochemical testing of the PtCo NAs demonstrates exceptional methanol oxidation reaction (MOR) activity, achieving 1.25 A mg-1. Moreover, the PtCo NAs exhibit outstanding stability throughout the testing period, underscoring the effectiveness of the anchoring mechanism. Comprehensive characterization and theoretical calculations reveal that the 2D carbon-anchored structure optimizes the electronic structure and coordination environment of Pt, restricts nanoparticle migration, and suppresses transition metal dissolution. This strategy represents a major advancement in addressing the stability limitations of ultrafine nanoparticles in catalytic applications and offers broader insights into the design of next-generation catalysts with enhanced durability and performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以碳为基底的超细铂基合金纳米粒子因其催化潜力而备受关注。然而,如何确保这些纳米粒子的稳定性仍然是一个严峻的挑战,阻碍了它们的广泛应用。本研究引入了新型纳米点阵(NAs),将超细合金纳米粒子均匀地植入二维碳基底并牢牢固定。铂钴纳米点阵列的电化学测试表明其具有优异的甲醇氧化反应(MOR)活性,达到 1.25 A mg-1。此外,铂钴氮氧化物在整个测试期间都表现出卓越的稳定性,凸显了锚定机制的有效性。综合表征和理论计算显示,二维碳锚定结构优化了铂的电子结构和配位环境,限制了纳米粒子的迁移,并抑制了过渡金属的溶解。这一策略在解决超细纳米粒子在催化应用中的稳定性限制方面取得了重大进展,并为设计耐久性和性能更强的下一代催化剂提供了更广泛的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Dimeric DNA Aptamers for the Spike Protein of SARS-CoV-2 Derived from a Structured Library with Dual Random Domains. Direct Tensile Testing of Free-Standing Ultrathin Polymer Films on Liquid Surface at High Temperature. Photonic Inks with Dual-Layer Security Features by Encapsulation of Color Tunable Fluorescent Dyes in PMMA Colloidal Microspheres. Cyanogroup-Modified PEO-Based Electrolytes Achieve High Free Al3+ Concentration and Improve the Transport Dynamics in Solid-State Aluminum-Ion Batteries. Toward Automated DNA Nanoprinting: Advancing the Synthesis of Covalently Branched DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1