Gut microbiota of patients insusceptible to olanzapine-induced fatty liver disease relieves hepatic steatosis in rats.

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2025-02-01 Epub Date: 2024-12-16 DOI:10.1152/ajpgi.00167.2024
Qian Wu, Jing Wang, Chuyue Tu, Peiru Chen, Yahui Deng, Lixiu Yu, Xiaojin Xu, Xiangming Fang, Weiyong Li
{"title":"Gut microbiota of patients insusceptible to olanzapine-induced fatty liver disease relieves hepatic steatosis in rats.","authors":"Qian Wu, Jing Wang, Chuyue Tu, Peiru Chen, Yahui Deng, Lixiu Yu, Xiaojin Xu, Xiangming Fang, Weiyong Li","doi":"10.1152/ajpgi.00167.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Olanzapine-induced fatty liver disease continues to pose vital therapeutic challenges in the treatment of psychiatric disorders. In addition, we observed that some patients were less prone to hepatic steatosis induced by olanzapine. Therefore, we aimed to investigate the role and the underlying mechanism of the intestinal flora in olanzapine-mediated hepatic side effects and explore the possible countermeasures. Our results showed that patients with different susceptibilities to olanzapine-induced fatty liver disease had different gut microbial diversity and composition. Furthermore, we performed fecal microbiota treatment (FMT), and confirmed that the gut microbiome of patients less prone to the fatty liver caused by olanzapine exhibited an alleviation against fatty liver disease in rats. In terms of mechanism, we revealed that the cross talk of leptin with the gut-short-chain fatty acid (SCFA)-liver axis play a critical role in olanzapine-related fatty degeneration in liver. These findings propose a promising strategy for overcoming the issues associated with olanzapine application and will hopefully inspire future in-depth research of fecal microbiota-based therapy in olanzapine-induced fatty liver disease.<b>NEW & NOTEWORTHY</b> Patients who were less inclined to have olanzapine-induced fatty liver had different gut microbiota profiles than did those in the susceptible cohort. Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Butyricicoccaceae, and Christensenellaceae were enriched in patients who were less prone to fatty liver disease caused by olanzapine. Fecal microbiota treatment (FMT) with these fecal samples promoted short-chain fatty acid (SCFA) production, which attenuated the circulating leptin and inhibited FASN and ACC1, thereby suppressing lipid synthesis in the liver, ultimately leading to alleviation of hepatic steatosis.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G110-G124"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00167.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Olanzapine-induced fatty liver disease continues to pose vital therapeutic challenges in the treatment of psychiatric disorders. In addition, we observed that some patients were less prone to hepatic steatosis induced by olanzapine. Therefore, we aimed to investigate the role and the underlying mechanism of the intestinal flora in olanzapine-mediated hepatic side effects and explore the possible countermeasures. Our results showed that patients with different susceptibilities to olanzapine-induced fatty liver disease had different gut microbial diversity and composition. Furthermore, we performed fecal microbiota treatment (FMT), and confirmed that the gut microbiome of patients less prone to the fatty liver caused by olanzapine exhibited an alleviation against fatty liver disease in rats. In terms of mechanism, we revealed that the cross talk of leptin with the gut-short-chain fatty acid (SCFA)-liver axis play a critical role in olanzapine-related fatty degeneration in liver. These findings propose a promising strategy for overcoming the issues associated with olanzapine application and will hopefully inspire future in-depth research of fecal microbiota-based therapy in olanzapine-induced fatty liver disease.NEW & NOTEWORTHY Patients who were less inclined to have olanzapine-induced fatty liver had different gut microbiota profiles than did those in the susceptible cohort. Lachnospiraceae, Ruminococcaceae, Oscillospiraceae, Butyricicoccaceae, and Christensenellaceae were enriched in patients who were less prone to fatty liver disease caused by olanzapine. Fecal microbiota treatment (FMT) with these fecal samples promoted short-chain fatty acid (SCFA) production, which attenuated the circulating leptin and inhibited FASN and ACC1, thereby suppressing lipid synthesis in the liver, ultimately leading to alleviation of hepatic steatosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对奥氮平诱发的脂肪肝不敏感的患者的肠道微生物群能缓解大鼠的肝脂肪变性。
奥氮平诱发的脂肪肝仍然是治疗精神疾病的重要挑战。此外,我们还观察到一些患者不易发生奥氮平诱导的肝脂肪变性。因此,我们旨在研究肠道菌群在奥氮平介导的肝脏副作用中的作用和潜在机制,并探索可能的对策。我们的研究结果表明,对奥氮平诱导的脂肪肝易感性不同的患者,其肠道微生物的多样性和组成也不同。此外,我们还进行了粪便微生物群治疗(FMT),证实奥氮平导致脂肪肝的易感性较低的患者的肠道微生物群对大鼠脂肪肝有缓解作用。在机制方面,我们发现瘦素与肠道-短链脂肪酸(SCFA)-肝脏轴的串联在奥氮平相关的肝脏脂肪变性中发挥了关键作用。这些发现为克服与奥氮平应用相关的问题提出了一种前景广阔的策略,并有望激励未来对基于粪便微生物群的奥氮平诱发脂肪肝治疗进行深入研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
期刊最新文献
In silico integrative scRNA analysis of human colonic epithelium indicates four tuft cell subtypes. Gut microbiota of patients insusceptible to olanzapine-induced fatty liver disease relieves hepatic steatosis in rats. Deleterious impacts of Western diet on jejunum function and health are reversible. Augmenting anti-inflammatory macrophage function in colitis: a neuroimmune mechanism to drive intestinal wound repair. Local tissue response to a C-X-C motif chemokine ligand 12 therapy for fecal incontinence in a rabbit model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1