Linda J. Fothergill , Mitchell T. Ringuet , Lara M. Voglsanger , Wesley J.N. Plange , Leigh C. Walker , Leni R. Rivera , Andrew J. Lawrence , Andrew L. Gundlach , Shanti Diwakarla , John B. Furness , Craig M. Smith
{"title":"Localisation of the relaxin-family peptide 3 receptor to enteroendocrine cells of the intestine in RXFP3-Cre/tdTomato mice","authors":"Linda J. Fothergill , Mitchell T. Ringuet , Lara M. Voglsanger , Wesley J.N. Plange , Leigh C. Walker , Leni R. Rivera , Andrew J. Lawrence , Andrew L. Gundlach , Shanti Diwakarla , John B. Furness , Craig M. Smith","doi":"10.1016/j.bcp.2024.116714","DOIUrl":null,"url":null,"abstract":"<div><div>The relaxin-family peptide 3 receptor (RXFP3) and its native ligand, relaxin-3, are expressed in specific populations of brain neurons, and research on this system has focused on its role in the central nervous system. However, some studies have indicated that relaxin-3 and RXFP3 are also expressed in peripheral organs, including the gut. In this study, we characterised the identity of RXFP3-expressing cells in the gastrointestinal tract, using RXFP3-Cre/tdTomato reporter mice. We identified RXFP3-tdTomato expression in neurons throughout the small and large intestine, in cells in the lamina propria of the colon, and in enteroendocrine cells in the small intestine. We characterised the frequency and phenotype of the RXFP3-tdTomato + enteroendocrine cells in both the duodenum and distal ileum and discovered that the reporter was expressed in populations of cells that co-express 5-hydroxytryptamine (5-HT), cholecystokinin (CCK), secretin, peptide YY (PYY), oxyntomodulin, neurotensin, ghrelin, or glucose-dependent insulinotropic polypeptide (GIP). Faithful co-expression of Cre and RXFP3 mRNA was confirmed in RXFP3-Cre mice using multiplex, fluorescence in situ hybridisation (via RNAscope™). Our results indicate that RXFP3 is expressed by the LIN, X, K, Onecut3, and EC enteroendocrine cell types. In light of the key physiological roles of these cells, this study highlights the potential for relaxin-3 signalling via RXFP3 in enteroendocrine cells to modulate digestion, metabolism, food intake, and inflammatory processes.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"232 ","pages":"Article 116714"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224007159","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The relaxin-family peptide 3 receptor (RXFP3) and its native ligand, relaxin-3, are expressed in specific populations of brain neurons, and research on this system has focused on its role in the central nervous system. However, some studies have indicated that relaxin-3 and RXFP3 are also expressed in peripheral organs, including the gut. In this study, we characterised the identity of RXFP3-expressing cells in the gastrointestinal tract, using RXFP3-Cre/tdTomato reporter mice. We identified RXFP3-tdTomato expression in neurons throughout the small and large intestine, in cells in the lamina propria of the colon, and in enteroendocrine cells in the small intestine. We characterised the frequency and phenotype of the RXFP3-tdTomato + enteroendocrine cells in both the duodenum and distal ileum and discovered that the reporter was expressed in populations of cells that co-express 5-hydroxytryptamine (5-HT), cholecystokinin (CCK), secretin, peptide YY (PYY), oxyntomodulin, neurotensin, ghrelin, or glucose-dependent insulinotropic polypeptide (GIP). Faithful co-expression of Cre and RXFP3 mRNA was confirmed in RXFP3-Cre mice using multiplex, fluorescence in situ hybridisation (via RNAscope™). Our results indicate that RXFP3 is expressed by the LIN, X, K, Onecut3, and EC enteroendocrine cell types. In light of the key physiological roles of these cells, this study highlights the potential for relaxin-3 signalling via RXFP3 in enteroendocrine cells to modulate digestion, metabolism, food intake, and inflammatory processes.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.