Theoretical studies on the antioxidant activity of potential marine xanthones.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Research Pub Date : 2024-12-15 DOI:10.1080/10715762.2024.2438918
Phan Thi Thuy, Nguyen Xuan Ha
{"title":"Theoretical studies on the antioxidant activity of potential marine xanthones.","authors":"Phan Thi Thuy, Nguyen Xuan Ha","doi":"10.1080/10715762.2024.2438918","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a quantum chemical exploration was conducted to assess the antioxidant activity of xanthones isolated from marine sources, focusing on thermodynamics and kinetics within simulated physiological environments. DFT analysis revealed that xanthones such as 1,4,7-trihydroxy-6-methylxanthone (<b>1</b>), 1,4,5-trihydroxy-2-methylxanthone (<b>2</b>), arthone C (<b>3</b>), 2,3,4,6,8-pentahydroxy-1-methylxanthone (<b>4</b>), sterigmatocystin (<b>5</b>), oxisterigmatocystin C (<b>6</b>), and oxisterigmatocystin D (<b>7</b>) favor the SPLET pathway in water and the FHT pathway in lipid environments. The kinetic study of these xanthones reacting with the hydroperoxyl radical (HOO•) was conducted using the formal hydrogen atom transfer (FHT) mechanism and the single electron transfer (SET) mechanism. The results showed that compounds <b>1</b>-<b>4</b> exhibited antioxidant activities in aqueous environments surpassing that of the reference compound Trolox, with rate constants ranging from 2.02 x 10<sup>5</sup> to 9.44 x 10<sup>7</sup> M<sup>-1</sup>·s<sup>-1</sup>. In lipid environments, compounds <b>1</b> and <b>2</b> also demonstrated higher rate constants than Trolox. Additionally, molecular docking and molecular dynamics analysis suggested that xanthones <b>1</b>-<b>7</b> potentially inhibit the pro-oxidant effect of the Keap1 enzyme, highlighting their promise as both antiradicals and enzyme inhibitors.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-15"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2024.2438918","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a quantum chemical exploration was conducted to assess the antioxidant activity of xanthones isolated from marine sources, focusing on thermodynamics and kinetics within simulated physiological environments. DFT analysis revealed that xanthones such as 1,4,7-trihydroxy-6-methylxanthone (1), 1,4,5-trihydroxy-2-methylxanthone (2), arthone C (3), 2,3,4,6,8-pentahydroxy-1-methylxanthone (4), sterigmatocystin (5), oxisterigmatocystin C (6), and oxisterigmatocystin D (7) favor the SPLET pathway in water and the FHT pathway in lipid environments. The kinetic study of these xanthones reacting with the hydroperoxyl radical (HOO•) was conducted using the formal hydrogen atom transfer (FHT) mechanism and the single electron transfer (SET) mechanism. The results showed that compounds 1-4 exhibited antioxidant activities in aqueous environments surpassing that of the reference compound Trolox, with rate constants ranging from 2.02 x 105 to 9.44 x 107 M-1·s-1. In lipid environments, compounds 1 and 2 also demonstrated higher rate constants than Trolox. Additionally, molecular docking and molecular dynamics analysis suggested that xanthones 1-7 potentially inhibit the pro-oxidant effect of the Keap1 enzyme, highlighting their promise as both antiradicals and enzyme inhibitors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于潜在海洋氧杂蒽酮抗氧化活性的理论研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
期刊最新文献
Hyperoxia induces autophagy in pulmonary epithelial cells: insights from in vivo and in vitro experiments. Apelin deficiency exacerbates cardiac injury following infarction by accelerating cardiomyocyte ferroptosis. New era of plasma dentistry. Exploring the Impact of Apelin and Reactive Oxygen Species on Autophagy and Cell Senescence in Pre-eclampsia. Theoretical studies on the antioxidant activity of potential marine xanthones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1