Enhancing diabetic retinopathy and macular edema detection through multi scale feature fusion using deep learning model.

Gowri L, Haris R, Sumathi M, S P Raja
{"title":"Enhancing diabetic retinopathy and macular edema detection through multi scale feature fusion using deep learning model.","authors":"Gowri L, Haris R, Sumathi M, S P Raja","doi":"10.1007/s00417-024-06687-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This work tackles the growing problem of early identification of diabetic retinopathy and diabetic macular edema. The deep neural network design utilizes multi-scale feature fusion to improve automated diagnostic accuracy. Methods This approach uses convolutional neural networks (CNN) and is designed to combine higher-level semantic inputs with low-level textural characteristics. The contextual and localized abstract representations that complement each other are combined via a unique fusion technique.</p><p><strong>Results: </strong>Use the MESSIDOR dataset, which comprises retinal images labeled with pathological annotations, for model training and validation to ensure robust algorithm development. The suggested model shows a 98% general precision and good performance in diabetic retinopathy. This model achieves an impressive nearly 100% exactness for diabetic macular edema, with particularly high accuracy (0.99).</p><p><strong>Conclusion: </strong>Consistent performance increases the likelihood that the vision will be upheld through public screening and extensive clinical integration.</p>","PeriodicalId":12795,"journal":{"name":"Graefe’s Archive for Clinical and Experimental Ophthalmology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graefe’s Archive for Clinical and Experimental Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00417-024-06687-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This work tackles the growing problem of early identification of diabetic retinopathy and diabetic macular edema. The deep neural network design utilizes multi-scale feature fusion to improve automated diagnostic accuracy. Methods This approach uses convolutional neural networks (CNN) and is designed to combine higher-level semantic inputs with low-level textural characteristics. The contextual and localized abstract representations that complement each other are combined via a unique fusion technique.

Results: Use the MESSIDOR dataset, which comprises retinal images labeled with pathological annotations, for model training and validation to ensure robust algorithm development. The suggested model shows a 98% general precision and good performance in diabetic retinopathy. This model achieves an impressive nearly 100% exactness for diabetic macular edema, with particularly high accuracy (0.99).

Conclusion: Consistent performance increases the likelihood that the vision will be upheld through public screening and extensive clinical integration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习模型,通过多尺度特征融合增强糖尿病视网膜病变和黄斑水肿检测。
背景:这项研究解决了糖尿病视网膜病变和糖尿病黄斑水肿早期识别这一日益严重的问题。深度神经网络设计利用多尺度特征融合来提高自动诊断的准确性。方法 这种方法使用卷积神经网络(CNN),旨在将高层语义输入与低层纹理特征相结合。通过独特的融合技术将互为补充的上下文和局部抽象表征结合起来:使用 MESSIDOR 数据集(由标有病理注释的视网膜图像组成)进行模型训练和验证,以确保算法开发的稳健性。建议的模型在糖尿病视网膜病变中显示出 98% 的一般精确度和良好的性能。该模型在糖尿病黄斑水肿方面的精确度接近 100%,尤其是精确度高达 0.99,令人印象深刻:结论:通过公共筛查和广泛的临床整合,一致的性能提高了维护视力的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
7.40%
发文量
398
审稿时长
3 months
期刊介绍: Graefe''s Archive for Clinical and Experimental Ophthalmology is a distinguished international journal that presents original clinical reports and clini-cally relevant experimental studies. Founded in 1854 by Albrecht von Graefe to serve as a source of useful clinical information and a stimulus for discussion, the journal has published articles by leading ophthalmologists and vision research scientists for more than a century. With peer review by an international Editorial Board and prompt English-language publication, Graefe''s Archive provides rapid dissemination of clinical and clinically related experimental information.
期刊最新文献
Evaluating anterior segment stability and corneal endothelium after prolene gonioscopy assisted transluminal trabeculotomy (GATT) in open-angle glaucoma. Effects of ambient atmospheric pressure on intraocular pressure measured using a Goldman applanation tonometer in normal eyes under ordinary conditions. Enhancing diabetic retinopathy and macular edema detection through multi scale feature fusion using deep learning model. Primary angle-closed diseases recognition through artificial intelligence-based anterior segment-optical coherence tomography imaging. Anterior segment OCT for imaging PAUL® glaucoma implant patch grafts: a useful method for follow-up and risk management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1