{"title":"Targeted APT8(16-34) obtained by cell-SELEX and its internalization with miR-23-5p into activated hepatic stellate cells.","authors":"Xue Yang, Lu Huang, Li-Qing Yang, Si-Yuan Wu, Ling Huang, Jiao-Jiao Wang, Bo-Tao Li, Ying Wang, Xiao-Lian Wang, Yi-Ran Ni, Rui-Tao Zhang, Yan-Qiong Zhang, Hong-Bing Zhang, Bo-Qing Zhang, Lan Ma, Jiang-Feng Wu, Chuan-Lin Jiang","doi":"10.1007/s12072-024-10760-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The activation of hepatic stellate cells play a pivotal role in the pathogenesis of hepatic fibrosis. However, the current lack of specifically identified targets on these cells poses a significant challenge in developing targeted delivery tools for effective anti-hepatic fibrosis therapeutics in clinical practice.</p><p><strong>Methods: </strong>Cell-systematic evolution of ligands by exponential enrichment method was conducted on HSC-T6 cell line to screen out activated hepatic stellate cell-specific aptamers. The specificity of the selected aptamers in targeting hepatic stellate cells was confirmed after truncation optimization. Furthermore, the optimal aptamer was conjugated with miR-23b-5p via C6 linkage to evaluate the targeting specificity of this complex and assess its potential in downregulating liver fibrosis-related proteins and slowing down the progression of liver fibrosis.</p><p><strong>Results: </strong>The present study successful identified 11 highly enriched single-stranded DNA sequences (APT1-11) that specifically target activated hepatic stellate cells. Subsequent affinity detection and optimization truncation led to the selection of APT8(16-34), which effectively targeted activated hepatic stellate cells both in vivo and in vitro. Moreover, when conjugated with miR-23b-5p, APT8(16-34) also exhibited internalization ability into activated hepatic stellate cells. The delivered cargo miR-23b-5p by APT8 (16-34) effectively targeted to mRNA, leading to translational inhibition and subsequent downregulation of related proteins.</p><p><strong>Conclusions: </strong>We have identified APT8 (16- 34), which exhibits specific targeting and internalization capabilities into activated hepatic stellate cells. Moreover, when conjugated with miR-23b-5p, APT8 (16-34) also internalizes into activated hepatic stellate cells, enabling miR-23b-5p exert their respective functions.</p>","PeriodicalId":12901,"journal":{"name":"Hepatology International","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatology International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12072-024-10760-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The activation of hepatic stellate cells play a pivotal role in the pathogenesis of hepatic fibrosis. However, the current lack of specifically identified targets on these cells poses a significant challenge in developing targeted delivery tools for effective anti-hepatic fibrosis therapeutics in clinical practice.
Methods: Cell-systematic evolution of ligands by exponential enrichment method was conducted on HSC-T6 cell line to screen out activated hepatic stellate cell-specific aptamers. The specificity of the selected aptamers in targeting hepatic stellate cells was confirmed after truncation optimization. Furthermore, the optimal aptamer was conjugated with miR-23b-5p via C6 linkage to evaluate the targeting specificity of this complex and assess its potential in downregulating liver fibrosis-related proteins and slowing down the progression of liver fibrosis.
Results: The present study successful identified 11 highly enriched single-stranded DNA sequences (APT1-11) that specifically target activated hepatic stellate cells. Subsequent affinity detection and optimization truncation led to the selection of APT8(16-34), which effectively targeted activated hepatic stellate cells both in vivo and in vitro. Moreover, when conjugated with miR-23b-5p, APT8(16-34) also exhibited internalization ability into activated hepatic stellate cells. The delivered cargo miR-23b-5p by APT8 (16-34) effectively targeted to mRNA, leading to translational inhibition and subsequent downregulation of related proteins.
Conclusions: We have identified APT8 (16- 34), which exhibits specific targeting and internalization capabilities into activated hepatic stellate cells. Moreover, when conjugated with miR-23b-5p, APT8 (16-34) also internalizes into activated hepatic stellate cells, enabling miR-23b-5p exert their respective functions.
期刊介绍:
Hepatology International is the official journal of the Asian Pacific Association for the Study of the Liver (APASL). This is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal will focus mainly on new and emerging technologies, cutting-edge science and advances in liver and biliary disorders.
Types of articles published:
-Original Research Articles related to clinical care and basic research
-Review Articles
-Consensus guidelines for diagnosis and treatment
-Clinical cases, images
-Selected Author Summaries
-Video Submissions