Nan Chen, Qin Zhang, Lei Sun, Xia You, Siqi Chen, Dongsheng Chen, Fengkun Yang
{"title":"Comprehensive study of gene fusions in sarcomas.","authors":"Nan Chen, Qin Zhang, Lei Sun, Xia You, Siqi Chen, Dongsheng Chen, Fengkun Yang","doi":"10.1007/s10637-024-01486-4","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcomas, including bone sarcomas and soft tissue sarcomas (STSs), are a heterogeneous group of mesenchymal malignancies. Recent advancements in next-generation sequencing (NGS) have enabled the identification of novel chromosomal translocations and fusion genes, which play a critical role in sarcoma subtypes. Our study focuses on gene fusions in sarcomas among Chinese patients, comparing their genomic profiles to those of Western populations. We analyzed 1048 sarcoma samples from Chinese patients using a panel of over 500 genes, identifying 481 gene fusions in 329 patients. The most common fusions included EWSR1, HMGA2, and SS18, with notable subtype-specific fusions such as EWSR1-FLI1 in Ewing sarcoma and NAB2-STAT6 in solitary fibrous tumors. In comparison to Chinese and Western populations, variations in fusion spectrum exist, potentially necessitating distinct treatment strategies; however, further validation of these fusions is warranted. Our findings highlight the importance of gene fusions as diagnostic markers and potential therapeutic targets. Actionable fusions, including kinase-related fusions like ALK, NTRK3, and BRAF, were detected in 67 patients (6.4%) and may guide precision therapies. Additionally, we observed the frequent co-occurrence of genomic alterations, particularly in cell cycle regulators such as CDK4 and MDM2. Genomic profiling of sarcomas offers valuable insights into their molecular drivers and can support personalized therapeutic approaches. Further research is needed to validate these findings and optimize treatment strategies for sarcoma patients.</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-024-01486-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sarcomas, including bone sarcomas and soft tissue sarcomas (STSs), are a heterogeneous group of mesenchymal malignancies. Recent advancements in next-generation sequencing (NGS) have enabled the identification of novel chromosomal translocations and fusion genes, which play a critical role in sarcoma subtypes. Our study focuses on gene fusions in sarcomas among Chinese patients, comparing their genomic profiles to those of Western populations. We analyzed 1048 sarcoma samples from Chinese patients using a panel of over 500 genes, identifying 481 gene fusions in 329 patients. The most common fusions included EWSR1, HMGA2, and SS18, with notable subtype-specific fusions such as EWSR1-FLI1 in Ewing sarcoma and NAB2-STAT6 in solitary fibrous tumors. In comparison to Chinese and Western populations, variations in fusion spectrum exist, potentially necessitating distinct treatment strategies; however, further validation of these fusions is warranted. Our findings highlight the importance of gene fusions as diagnostic markers and potential therapeutic targets. Actionable fusions, including kinase-related fusions like ALK, NTRK3, and BRAF, were detected in 67 patients (6.4%) and may guide precision therapies. Additionally, we observed the frequent co-occurrence of genomic alterations, particularly in cell cycle regulators such as CDK4 and MDM2. Genomic profiling of sarcomas offers valuable insights into their molecular drivers and can support personalized therapeutic approaches. Further research is needed to validate these findings and optimize treatment strategies for sarcoma patients.
期刊介绍:
The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.