Removal efficiency of antineoplastic drug cyclophosphamide by hypochlorous acid.

IF 1.5 4区 医学 Q4 ENVIRONMENTAL SCIENCES Journal of Occupational and Environmental Hygiene Pub Date : 2024-12-10 DOI:10.1080/15459624.2024.2423752
Yusuke Iwasaki, Makoto Hiraide, Haruna Taguchi, Ryuya Iehisa, Hiroshi Akiyama, Kenichi Suzuki, Hisanori Shimizu, Masakazu Yamaguchi
{"title":"Removal efficiency of antineoplastic drug cyclophosphamide by hypochlorous acid.","authors":"Yusuke Iwasaki, Makoto Hiraide, Haruna Taguchi, Ryuya Iehisa, Hiroshi Akiyama, Kenichi Suzuki, Hisanori Shimizu, Masakazu Yamaguchi","doi":"10.1080/15459624.2024.2423752","DOIUrl":null,"url":null,"abstract":"<p><p>Hypochlorous acid (HClO), one of the major reactive oxygen species, is obtained by electrolyzing a sodium chloride solution. HClO is a safe and effective disinfectant and decomposing agent widely used as an alternative to sodium hypochlorite (NaClO). In this study, the authors aimed to evaluate the safety and efficiency of HClO generated by electrolyzing sodium chloride as a decontaminant. Cyclophosphamide (CPA), an antineoplastic drug, was selected as the model drug, and various solvents (HClO, NaClO, etc.) were compared to identify the solvents that could react with and efficiently decompose CPA. To identify a solvent that efficiently decomposes CPA, the CPA concentration was measured using liquid chromatography with photodiode array detection. When either NaClO or HClO was used, the CPA concentration decreased, and a peak corresponding to 3-chloro CPA, identified by mass spectrometry, was detected. Furthermore, to investigate the reversibility of the reaction between CPA and ClO<sup>-</sup>, ClO<sup>-</sup> was removed from the reaction solution using solid-phase extraction, resulting in the previously decreased CPA concentration returning to nearly its original level. Occupational exposure to antineoplastic drugs poses a significant risk to worker health. This study's results suggest that CPA can be replaced by 3-chloro CPA when HClO is used as the wiping solvent like NaClO, thereby reducing occupational exposure from wiping. Future studies should investigate the wiping and degradation efficiencies of other anti-cancer agents. Occupational exposure to anti-cancer drugs can be significantly reduced by integrating various mitigation measures, thereby contributing to a safer work environment for healthcare professionals.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"1-9"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2024.2423752","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hypochlorous acid (HClO), one of the major reactive oxygen species, is obtained by electrolyzing a sodium chloride solution. HClO is a safe and effective disinfectant and decomposing agent widely used as an alternative to sodium hypochlorite (NaClO). In this study, the authors aimed to evaluate the safety and efficiency of HClO generated by electrolyzing sodium chloride as a decontaminant. Cyclophosphamide (CPA), an antineoplastic drug, was selected as the model drug, and various solvents (HClO, NaClO, etc.) were compared to identify the solvents that could react with and efficiently decompose CPA. To identify a solvent that efficiently decomposes CPA, the CPA concentration was measured using liquid chromatography with photodiode array detection. When either NaClO or HClO was used, the CPA concentration decreased, and a peak corresponding to 3-chloro CPA, identified by mass spectrometry, was detected. Furthermore, to investigate the reversibility of the reaction between CPA and ClO-, ClO- was removed from the reaction solution using solid-phase extraction, resulting in the previously decreased CPA concentration returning to nearly its original level. Occupational exposure to antineoplastic drugs poses a significant risk to worker health. This study's results suggest that CPA can be replaced by 3-chloro CPA when HClO is used as the wiping solvent like NaClO, thereby reducing occupational exposure from wiping. Future studies should investigate the wiping and degradation efficiencies of other anti-cancer agents. Occupational exposure to anti-cancer drugs can be significantly reduced by integrating various mitigation measures, thereby contributing to a safer work environment for healthcare professionals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
次氯酸去除抗肿瘤药物环磷酰胺的效率
次氯酸(HClO)是主要活性氧之一,通过电解氯化钠溶液获得。HClO 是一种安全有效的消毒剂和分解剂,被广泛用作次氯酸钠(NaClO)的替代品。在这项研究中,作者旨在评估通过电解氯化钠生成的 HClO 作为去污剂的安全性和效率。研究人员选择了抗肿瘤药物环磷酰胺(CPA)作为模型药物,并对各种溶剂(HClO、NaClO 等)进行了比较,以确定能够与 CPA 发生反应并有效分解 CPA 的溶剂。为了确定能有效分解 CPA 的溶剂,使用液相色谱法和光电二极管阵列检测器测量 CPA 的浓度。当使用 NaClO 或 HClO 时,CPA 浓度下降,并检测到一个与 3-chloro CPA 相对应的峰值,该峰值通过质谱鉴定。此外,为了研究 CPA 与 ClO- 反应的可逆性,使用固相萃取法从反应溶液中去除 ClO-,结果先前降低的 CPA 浓度几乎恢复到原来的水平。职业性接触抗肿瘤药物对工人的健康构成重大风险。本研究的结果表明,当使用 HClO 作为像 NaClO 一样的擦拭溶剂时,可以用 3-chloro CPA 替代 CPA,从而减少因擦拭而产生的职业接触。今后的研究应调查其他抗癌剂的擦拭和降解效率。通过整合各种缓解措施,可以大大减少抗癌药物的职业接触,从而为医护人员提供更安全的工作环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Occupational and Environmental Hygiene
Journal of Occupational and Environmental Hygiene 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
10.00%
发文量
81
审稿时长
12-24 weeks
期刊介绍: The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality. The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.
期刊最新文献
Application of the Tier 3 NIOSH occupational exposure banding process for the graphene family of nanomaterials: A case study. Caution with self-reported occupational noise exposures. Lessons learned in establishing and sustaining elastomeric half mask respirator-based respiratory protection programs: An impact evaluation. Removal efficiency of antineoplastic drug cyclophosphamide by hypochlorous acid. Response to the comments from Mr. Shkembi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1