Exacerbation of pulmonary fibrosis following acute lung injury via activin-A production by recruited alveolar macrophages.

IF 2.1 3区 医学 Q3 RESPIRATORY SYSTEM Journal of thoracic disease Pub Date : 2024-11-30 Epub Date: 2024-11-14 DOI:10.21037/jtd-24-680
Ting Pan, Yinzhou Feng, Yufan Li, Yanping Yang, Jian Zhou, Yuanlin Song
{"title":"Exacerbation of pulmonary fibrosis following acute lung injury via activin-A production by recruited alveolar macrophages.","authors":"Ting Pan, Yinzhou Feng, Yufan Li, Yanping Yang, Jian Zhou, Yuanlin Song","doi":"10.21037/jtd-24-680","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute respiratory distress syndrome (ARDS) is a complicated pathological cascade process of excessive pulmonary inflammation and alveolar epithelial cell apoptosis that results in respiratory dysfunction and failure. Some cases of ARDS can result in a more severe state of pulmonary fibrosis, referred to as postinjury lung fibrosis. The mortality and incidence rate of ARDS are high, particularly when it leads to continuing alveolar and interstitial fibrosis, which requires urgent treatment and appropriate management. The lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model has been widely implemented for studying ARDS in humans. In our study, we found alterations in the alveolar macrophage (AM) profile in such a mouse model. Specifically, activin-A produced by dominantly recruited AMs (recAMs) was noted to be implicated in the process of post-injury lung fibrosis.</p><p><strong>Methods: </strong>The ALI animal model in C57BL/6 mice was established via 3.5 mg/kg of LPS intratracheal administration. Single-cell RNA (scRNA) sequencing was used for detailed classification and functional characterization of lung macrophages. Through <i>in vivo</i> experiments, we evaluated the role that activin-A plays in post-injury lung fibrosis in an ALI mouse model using enzyme-linked immunosorbent assay (ELISA), histological staining methods, and immunofluorescence. Through <i>in vitro</i> experiments, we analyzed the effect of activin-A on murine lung epithelial 12 (MLE-12) cells and bone marrow-derived macrophages (BMDMs) using Western blotting (WB), quantitative real-time polymerase chain reaction, RNA sequencing, and immunofluorescence.</p><p><strong>Results: </strong>Our findings revealed that recAMs replaced tissue-resident alveolar macrophages (TRAMs) as the dominant macrophage population in the setting of ALI. The results of Gene Ontology (GO) analysis suggested that activin-A was associated with wound healing and suppressor of mothers against decapentaplegic (SMAD) protein signaling pathways. Immunofluorescence results revealed that the receptor of activin-A mainly localized to alveolar epithelial cells and macrophages. Subsequently, activin-A was specifically found to drive MLE-12 cells to mesenchymal cell transformation via the transforming growth factor-β (TGF-β)/SMAD signaling. Moreover, the results of transcriptome analysis and WB confirmed that activin-A could enhance the concerted activity of Hippo and TGF-β/SMAD pathways in BMDMs, leading to an increased expression of profibrotic mediator. Moreover, yes-associated protein (YAP) and transcriptional coactivated with PDZ-binding motif (TAZ) proteins were found to drive BMDM activin-A expression, which could generate a positive feedback mechanism that perpetuates fibrosis.</p><p><strong>Conclusions: </strong>Our findings revealed that activin-A is involved in the pathological mechanisms in post-injury lung fibrosis by promoting epithelial-mesenchymal transition (EMT) and the formation of an underlying profibrotic positive feedback loop in recAMs. Activin-A is thus a potential therapeutic target for developing ALI and ALI-associated pulmonary fibrosis therapeutics.</p>","PeriodicalId":17542,"journal":{"name":"Journal of thoracic disease","volume":"16 11","pages":"7709-7728"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thoracic disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/jtd-24-680","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute respiratory distress syndrome (ARDS) is a complicated pathological cascade process of excessive pulmonary inflammation and alveolar epithelial cell apoptosis that results in respiratory dysfunction and failure. Some cases of ARDS can result in a more severe state of pulmonary fibrosis, referred to as postinjury lung fibrosis. The mortality and incidence rate of ARDS are high, particularly when it leads to continuing alveolar and interstitial fibrosis, which requires urgent treatment and appropriate management. The lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model has been widely implemented for studying ARDS in humans. In our study, we found alterations in the alveolar macrophage (AM) profile in such a mouse model. Specifically, activin-A produced by dominantly recruited AMs (recAMs) was noted to be implicated in the process of post-injury lung fibrosis.

Methods: The ALI animal model in C57BL/6 mice was established via 3.5 mg/kg of LPS intratracheal administration. Single-cell RNA (scRNA) sequencing was used for detailed classification and functional characterization of lung macrophages. Through in vivo experiments, we evaluated the role that activin-A plays in post-injury lung fibrosis in an ALI mouse model using enzyme-linked immunosorbent assay (ELISA), histological staining methods, and immunofluorescence. Through in vitro experiments, we analyzed the effect of activin-A on murine lung epithelial 12 (MLE-12) cells and bone marrow-derived macrophages (BMDMs) using Western blotting (WB), quantitative real-time polymerase chain reaction, RNA sequencing, and immunofluorescence.

Results: Our findings revealed that recAMs replaced tissue-resident alveolar macrophages (TRAMs) as the dominant macrophage population in the setting of ALI. The results of Gene Ontology (GO) analysis suggested that activin-A was associated with wound healing and suppressor of mothers against decapentaplegic (SMAD) protein signaling pathways. Immunofluorescence results revealed that the receptor of activin-A mainly localized to alveolar epithelial cells and macrophages. Subsequently, activin-A was specifically found to drive MLE-12 cells to mesenchymal cell transformation via the transforming growth factor-β (TGF-β)/SMAD signaling. Moreover, the results of transcriptome analysis and WB confirmed that activin-A could enhance the concerted activity of Hippo and TGF-β/SMAD pathways in BMDMs, leading to an increased expression of profibrotic mediator. Moreover, yes-associated protein (YAP) and transcriptional coactivated with PDZ-binding motif (TAZ) proteins were found to drive BMDM activin-A expression, which could generate a positive feedback mechanism that perpetuates fibrosis.

Conclusions: Our findings revealed that activin-A is involved in the pathological mechanisms in post-injury lung fibrosis by promoting epithelial-mesenchymal transition (EMT) and the formation of an underlying profibrotic positive feedback loop in recAMs. Activin-A is thus a potential therapeutic target for developing ALI and ALI-associated pulmonary fibrosis therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过招募的肺泡巨噬细胞产生活化素-A,加剧急性肺损伤后的肺纤维化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of thoracic disease
Journal of thoracic disease RESPIRATORY SYSTEM-
CiteScore
4.60
自引率
4.00%
发文量
254
期刊介绍: The Journal of Thoracic Disease (JTD, J Thorac Dis, pISSN: 2072-1439; eISSN: 2077-6624) was founded in Dec 2009, and indexed in PubMed in Dec 2011 and Science Citation Index SCI in Feb 2013. It is published quarterly (Dec 2009- Dec 2011), bimonthly (Jan 2012 - Dec 2013), monthly (Jan. 2014-) and openly distributed worldwide. JTD received its impact factor of 2.365 for the year 2016. JTD publishes manuscripts that describe new findings and provide current, practical information on the diagnosis and treatment of conditions related to thoracic disease. All the submission and reviewing are conducted electronically so that rapid review is assured.
期刊最新文献
How can osteosynthesis material used for fracture fixation undergo intrathoracic migration?-a systematic literature review. Identification of prognostic factors of chronic pulmonary aspergillosis: a retrospective cohort of 106 patients. Safety and efficacy of percutaneous mechanical thrombectomy in the treatment of acute medium- or high-risk pulmonary embolism: a single-center retrospective cross-sectional study. Impact of high spinal anesthesia in pediatric congenital heart surgery on postoperative recovery: a retrospective propensity score-matched study. Impact of lymph node evaluation standard in patients undergoing lung resection for clinical stage IA pulmonary adenocarcinoma and squamous cell carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1