Yi Li, Xinyi Hong, Wenqian Xu, Jinhong Guo, Yongyuan Su, Haolan Li, Yingjie Xie, Xing Chen, Xiong Zheng, Sufang Qiu
{"title":"Identification and validation of a prognostic risk model based on radiosensitivity-related genes in nasopharyngeal carcinoma.","authors":"Yi Li, Xinyi Hong, Wenqian Xu, Jinhong Guo, Yongyuan Su, Haolan Li, Yingjie Xie, Xing Chen, Xiong Zheng, Sufang Qiu","doi":"10.1016/j.tranon.2024.102243","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite advancements with intensity-modulated radiation therapy (IMRT), about 10 % of nasopharyngeal carcinoma (NPC) patients remain resistant to radiotherapy, leading to recurrence and poor prognosis. This study aims to identify radiosensitivity-related genes in NPC and develop a prognostic model to predict patient outcomes.</p><p><strong>Methods: </strong>We analyzed 179 NPC samples from Fujian Cancer Hospital using RNA sequencing. Differentially expressed genes (DEGs) were identified between radiotherapy-sensitive and resistant samples. Machine learning algorithms and Cox regression were used to construct a prognostic risk model, validated in the GSE102349 dataset. Additional analyses included functional pathway, immune infiltration, and drug sensitivity.</p><p><strong>Results: </strong>A risk model based on six genes (LCN8, IGSF1, RIMS2, RBP4, TBX10, ETV4) was developed. Kaplan-Meier analysis showed significantly shorter progression-free survival (PFS) in the high-risk group. The model's AUC values were 0.872, 0.807, and 0.802 for 1-year, 3-year, and 5-year predictions. A nomogram including clinical factors was created, and enrichment analysis linked the high-risk group to radiotherapy resistance mechanisms.</p><p><strong>Conclusions: </strong>This study established a novel radiosensitivity-related prognostic model, offering insights into NPC prognosis and radiotherapy resistance mechanisms.</p>","PeriodicalId":23244,"journal":{"name":"Translational Oncology","volume":"52 ","pages":"102243"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tranon.2024.102243","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Despite advancements with intensity-modulated radiation therapy (IMRT), about 10 % of nasopharyngeal carcinoma (NPC) patients remain resistant to radiotherapy, leading to recurrence and poor prognosis. This study aims to identify radiosensitivity-related genes in NPC and develop a prognostic model to predict patient outcomes.
Methods: We analyzed 179 NPC samples from Fujian Cancer Hospital using RNA sequencing. Differentially expressed genes (DEGs) were identified between radiotherapy-sensitive and resistant samples. Machine learning algorithms and Cox regression were used to construct a prognostic risk model, validated in the GSE102349 dataset. Additional analyses included functional pathway, immune infiltration, and drug sensitivity.
Results: A risk model based on six genes (LCN8, IGSF1, RIMS2, RBP4, TBX10, ETV4) was developed. Kaplan-Meier analysis showed significantly shorter progression-free survival (PFS) in the high-risk group. The model's AUC values were 0.872, 0.807, and 0.802 for 1-year, 3-year, and 5-year predictions. A nomogram including clinical factors was created, and enrichment analysis linked the high-risk group to radiotherapy resistance mechanisms.
Conclusions: This study established a novel radiosensitivity-related prognostic model, offering insights into NPC prognosis and radiotherapy resistance mechanisms.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.