Predicting Sleep Quality in Family Caregivers of Dementia Patients From Diverse Populations Using Wearable Sensor Data.

IF 1.3 4区 医学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Cin-Computers Informatics Nursing Pub Date : 2024-12-16 DOI:10.1097/CIN.0000000000001192
Jung In Park, Seyed Amir Hossein Aqajari, Amir M Rahmani, Jung-Ah Lee
{"title":"Predicting Sleep Quality in Family Caregivers of Dementia Patients From Diverse Populations Using Wearable Sensor Data.","authors":"Jung In Park, Seyed Amir Hossein Aqajari, Amir M Rahmani, Jung-Ah Lee","doi":"10.1097/CIN.0000000000001192","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to use wearable technology to predict the sleep quality of family caregivers of people with dementia among underrepresented groups. Caregivers of people with dementia often experience high levels of stress and poor sleep, and those from underrepresented communities face additional burdens, such as language barriers and cultural adaptation challenges. Participants, consisting of 29 dementia caregivers from underrepresented populations, wore smartwatches that tracked various physiological and behavioral markers, including stress level, heart rate, steps taken, sleep duration and stages, and overall daily wellness. The study spanned 529 days and analyzed data using 70 features. Three machine learning algorithms-random forest, k nearest neighbor, and XGBoost classifiers-were developed for this purpose. The random forest classifier was shown to be the most effective, boasting an area under the curve of 0.86, an F1 score of 0.87, and a precision of 0.84. Key findings revealed that factors such as wake-up stress, wake-up heart rate, sedentary seconds, total distance traveled, and sleep duration significantly correlated with the caregivers' sleep quality. This research highlights the potential of wearable technology in assessing and predicting sleep quality, offering a pathway to creating targeted support measures for dementia caregivers from underserved groups. The study suggests that such technology can be instrumental in enhancing the well-being of these caregivers across diverse populations.</p>","PeriodicalId":50694,"journal":{"name":"Cin-Computers Informatics Nursing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cin-Computers Informatics Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CIN.0000000000001192","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to use wearable technology to predict the sleep quality of family caregivers of people with dementia among underrepresented groups. Caregivers of people with dementia often experience high levels of stress and poor sleep, and those from underrepresented communities face additional burdens, such as language barriers and cultural adaptation challenges. Participants, consisting of 29 dementia caregivers from underrepresented populations, wore smartwatches that tracked various physiological and behavioral markers, including stress level, heart rate, steps taken, sleep duration and stages, and overall daily wellness. The study spanned 529 days and analyzed data using 70 features. Three machine learning algorithms-random forest, k nearest neighbor, and XGBoost classifiers-were developed for this purpose. The random forest classifier was shown to be the most effective, boasting an area under the curve of 0.86, an F1 score of 0.87, and a precision of 0.84. Key findings revealed that factors such as wake-up stress, wake-up heart rate, sedentary seconds, total distance traveled, and sleep duration significantly correlated with the caregivers' sleep quality. This research highlights the potential of wearable technology in assessing and predicting sleep quality, offering a pathway to creating targeted support measures for dementia caregivers from underserved groups. The study suggests that such technology can be instrumental in enhancing the well-being of these caregivers across diverse populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cin-Computers Informatics Nursing
Cin-Computers Informatics Nursing 工程技术-护理
CiteScore
2.00
自引率
15.40%
发文量
248
审稿时长
6-12 weeks
期刊介绍: For over 30 years, CIN: Computers, Informatics, Nursing has been at the interface of the science of information and the art of nursing, publishing articles on the latest developments in nursing informatics, research, education and administrative of health information technology. CIN connects you with colleagues as they share knowledge on implementation of electronic health records systems, design decision-support systems, incorporate evidence-based healthcare in practice, explore point-of-care computing in practice and education, and conceptually integrate nursing languages and standard data sets. Continuing education contact hours are available in every issue.
期刊最新文献
Predicting Sleep Quality in Family Caregivers of Dementia Patients From Diverse Populations Using Wearable Sensor Data. Visualized Pattern-Based Hypothesis Testing on Exhaustion, Resilience, Sleep Quality, and Sleep Hygiene in Middle-Aged Women Transitioning Into Menopause or Postmenopause. Data Trauma: A Concept Analysis. Examining the Role of System Acceptance and Community Feeling in Predicting Nursing Students' Online Learning Satisfaction. Implementation of Diabetic Remote Patient Monitor for Underserved Population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1