Information Source Characteristics of Personal Data Leakage During the COVID-19 Pandemic in China: Observational Study.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2024-12-10 DOI:10.2196/51219
Zhong Wang, Fangru Hu, Jie Su, Yuyao Lin
{"title":"Information Source Characteristics of Personal Data Leakage During the COVID-19 Pandemic in China: Observational Study.","authors":"Zhong Wang, Fangru Hu, Jie Su, Yuyao Lin","doi":"10.2196/51219","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During the COVID-19 pandemic, in the period of preventing and controlling the spread of the virus, a large amount of personal data was collected in China, and privacy leakage incidents occurred.</p><p><strong>Objective: </strong>We aimed to examine the information source characteristics of personal data leakage during the COVID-19 pandemic in China.</p><p><strong>Methods: </strong>We extracted information source characteristics of 40 personal data leakage cases using open coding and analyzed the data with 1D and 2D matrices.</p><p><strong>Results: </strong>In terms of organizational characteristics, data leakage cases mainly occurred in government agencies below the prefecture level, while few occurred in the medical system or in high-level government organizations. The majority of leakers were regular employees or junior staff members rather than temporary workers or senior managers. Family WeChat groups were the primary route for disclosure; the forwarding of documents was the main method of divulgence, while taking screenshots and pictures made up a comparatively smaller portion.</p><p><strong>Conclusions: </strong>We propose the following suggestions: restricting the authority of nonmedical institutions and low-level government agencies to collect data, strengthening training for low-level employees on privacy protection, and restricting the flow of data on social media through technical measures.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e51219"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651669/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/51219","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: During the COVID-19 pandemic, in the period of preventing and controlling the spread of the virus, a large amount of personal data was collected in China, and privacy leakage incidents occurred.

Objective: We aimed to examine the information source characteristics of personal data leakage during the COVID-19 pandemic in China.

Methods: We extracted information source characteristics of 40 personal data leakage cases using open coding and analyzed the data with 1D and 2D matrices.

Results: In terms of organizational characteristics, data leakage cases mainly occurred in government agencies below the prefecture level, while few occurred in the medical system or in high-level government organizations. The majority of leakers were regular employees or junior staff members rather than temporary workers or senior managers. Family WeChat groups were the primary route for disclosure; the forwarding of documents was the main method of divulgence, while taking screenshots and pictures made up a comparatively smaller portion.

Conclusions: We propose the following suggestions: restricting the authority of nonmedical institutions and low-level government agencies to collect data, strengthening training for low-level employees on privacy protection, and restricting the flow of data on social media through technical measures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国 COVID-19 大流行期间个人数据泄露的信息源特征:观察研究。
背景:新冠肺炎疫情期间,在疫情防控期间,中国境内大量个人数据被收集,隐私泄露事件时有发生。目的:探讨新冠肺炎疫情期间中国个人数据泄露的信息源特征。方法:采用开放式编码提取40例个人数据泄露案例的信息源特征,并对数据进行一维和二维矩阵分析。结果:从组织特征来看,数据泄露事件主要发生在地级以下政府机构,医疗系统和高层政府机构发生较少。大多数泄密者是正式员工或初级职员,而不是临时工或高级管理人员。家庭论坛是披露信息的主要途径;文件转发是泄露的主要方式,截图和图片所占比例相对较小。结论:我们提出以下建议:限制非医疗机构和基层政府机构收集数据的权限,加强对基层员工隐私保护的培训,并通过技术措施限制数据在社交媒体上的流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
Identification of Clusters in a Population With Obesity Using Machine Learning: Secondary Analysis of The Maastricht Study. Electronic Health Record Use Patterns Among Well-Being Survey Responders and Nonresponders: Longitudinal Observational Study. Machine Learning-Based Risk Factor Analysis and Prediction Model Construction for the Occurrence of Chronic Heart Failure: Health Ecologic Study. Smart Contracts and Shared Platforms in Sustainable Health Care: Systematic Review. Diagnostic Decision-Making Variability Between Novice and Expert Optometrists for Glaucoma: Comparative Analysis to Inform AI System Design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1