Modulation of lysine transport in cultured rat astrocytes and astrocytoma cells.

L C Mokrasch
{"title":"Modulation of lysine transport in cultured rat astrocytes and astrocytoma cells.","authors":"L C Mokrasch","doi":"10.3109/09687688709029435","DOIUrl":null,"url":null,"abstract":"<p><p>In the previous paper, it was shown that the transport of lysine into astrocytes and astrocytoma cells obeys the classical enzyme kinetics. Although unmodulated lysine transport into both normal rat astrocytes and rat astrocytoma cells is somewhat slower than needed for observed growth in the culture, it is capable of a large degree of enhancement. Insulin increases the Vmax for lysine influx in astrocytes tenfold and in astrocytoma cells fivefold. Glutathione produces a Vmax enhancement of 80% for astrocytes and 70% for astrocytoma cells. gamma-Glutamyl hydrazide is a weak inhibitor of lysine transport. Diethyl maleate appears to break down the regulation of lysine transport and allows a large increase in lysine influx in both cell types studied. Basic amino acid analogues canaline and S-aminoethylcysteine are not potent inhibitors of lysine transport. Lysine efflux kinetics are slower for C6 cells than for astrocytes; this difference is abolished by diethyl maleate and by dithiothreitol.</p>","PeriodicalId":18448,"journal":{"name":"Membrane biochemistry","volume":"7 4","pages":"249-57"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687688709029435","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687688709029435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the previous paper, it was shown that the transport of lysine into astrocytes and astrocytoma cells obeys the classical enzyme kinetics. Although unmodulated lysine transport into both normal rat astrocytes and rat astrocytoma cells is somewhat slower than needed for observed growth in the culture, it is capable of a large degree of enhancement. Insulin increases the Vmax for lysine influx in astrocytes tenfold and in astrocytoma cells fivefold. Glutathione produces a Vmax enhancement of 80% for astrocytes and 70% for astrocytoma cells. gamma-Glutamyl hydrazide is a weak inhibitor of lysine transport. Diethyl maleate appears to break down the regulation of lysine transport and allows a large increase in lysine influx in both cell types studied. Basic amino acid analogues canaline and S-aminoethylcysteine are not potent inhibitors of lysine transport. Lysine efflux kinetics are slower for C6 cells than for astrocytes; this difference is abolished by diethyl maleate and by dithiothreitol.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大鼠星形胶质细胞和星形细胞瘤细胞中赖氨酸转运的调节。
在之前的文章中,我们发现赖氨酸在星形胶质细胞和星形细胞瘤细胞中的转运遵循经典的酶动力学。虽然未经调节的赖氨酸转运到正常大鼠星形胶质细胞和大鼠星形细胞瘤细胞中比在培养中观察到的生长需要慢一些,但它能够在很大程度上增强。胰岛素使星形胶质细胞赖氨酸内流的Vmax增加10倍,星形细胞瘤细胞的Vmax增加5倍。谷胱甘肽对星形胶质细胞和星形细胞瘤细胞的Vmax增强率分别为80%和70%。-谷氨酰肼是赖氨酸运输的弱抑制剂。马来酸二乙酯似乎破坏了赖氨酸运输的调节,并允许在研究的两种细胞类型中大量增加赖氨酸的流入。碱性氨基酸类似物犬碱和s -氨基乙基半胱氨酸不是赖氨酸运输的有效抑制剂。C6细胞赖氨酸外排动力学比星形胶质细胞慢;这种差别被马来酸二乙酯和二硫苏糖醇所消除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Properties of the ryanodine receptor present in the sarcoplasmic reticulum from lobster skeletal muscle. Uncoupling of occlusion from ATP hydrolysis activity in sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase. Use of the fluorescent probe Laurdan to investigate structural organization of the vesicular stomatitis virus (VSV) membrane. Inactivation of firefly luciferase and rat erythrocyte ATPase by ultrasound. Effect of free radical scavengers on changes in ion conductance during exposure to therapeutic ultrasound.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1