Jade Perdereau, Thibaut Chamoux, Etienne Gayat, Arthur Le Gall, Fabrice Vallée, Jérôme Cartailler, Jona Joachim
{"title":"Blood Pressure Estimation Using Explainable Deep-Learning Models Based on Photoplethysmography","authors":"Jade Perdereau, Thibaut Chamoux, Etienne Gayat, Arthur Le Gall, Fabrice Vallée, Jérôme Cartailler, Jona Joachim","doi":"10.1213/ane.0000000000007295","DOIUrl":null,"url":null,"abstract":". We developed a deep-learning model that reconstructs continuous mean arterial pressure (MAP) using the photoplethysmograhy (PPG) signal and compared it to the arterial line gold standard. METHODS: We analyzed high-frequency PPG signals from 117 patients in neuroradiology and digestive surgery with a median of 2201 (interquartile range [IQR], 788–4775) measurements per patient. We compared models with different combinations of convolutional and recurrent layers using as inputs for our neural network high-frequency PPG and derived features including dicrotic notch relative amplitude, perfusion index, and heart rate. Mean absolute error (MAE) was used as performance metrics. Explainability of the deep-learning model was reconstructed with Grad-CAM, a visualization technique using saliency maps to highlight the parts of an input that are significant for a deep-learning model decision-making process. RESULTS: An MAP baseline model, which consisted only of standard cuff measures, reached an MAE of 6.1 (± 14.5) mm Hg. In contrast, the deep-learning model achieved an MAE of 3.5 (± 4.4) mm Hg on the external test set (a 42.6% improvement). This model also achieved the narrowest confidence intervals and met international standards used within the community (grade A). The saliency map revealed that the deep-learning model primarily extracts information near the dicrotic notch region. CONCLUSIONS: Our deep-learning model noninvasively estimates arterial pressure with high accuracy. This model may show potential as a decision-support tool in operating-room settings, particularly in scenarios where invasive blood pressure monitoring is unavailable....","PeriodicalId":7799,"journal":{"name":"Anesthesia & Analgesia","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anesthesia & Analgesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1213/ane.0000000000007295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. We developed a deep-learning model that reconstructs continuous mean arterial pressure (MAP) using the photoplethysmograhy (PPG) signal and compared it to the arterial line gold standard. METHODS: We analyzed high-frequency PPG signals from 117 patients in neuroradiology and digestive surgery with a median of 2201 (interquartile range [IQR], 788–4775) measurements per patient. We compared models with different combinations of convolutional and recurrent layers using as inputs for our neural network high-frequency PPG and derived features including dicrotic notch relative amplitude, perfusion index, and heart rate. Mean absolute error (MAE) was used as performance metrics. Explainability of the deep-learning model was reconstructed with Grad-CAM, a visualization technique using saliency maps to highlight the parts of an input that are significant for a deep-learning model decision-making process. RESULTS: An MAP baseline model, which consisted only of standard cuff measures, reached an MAE of 6.1 (± 14.5) mm Hg. In contrast, the deep-learning model achieved an MAE of 3.5 (± 4.4) mm Hg on the external test set (a 42.6% improvement). This model also achieved the narrowest confidence intervals and met international standards used within the community (grade A). The saliency map revealed that the deep-learning model primarily extracts information near the dicrotic notch region. CONCLUSIONS: Our deep-learning model noninvasively estimates arterial pressure with high accuracy. This model may show potential as a decision-support tool in operating-room settings, particularly in scenarios where invasive blood pressure monitoring is unavailable....