Continual Learning: Forget-Free Winning Subnetworks for Video Representations

Haeyong Kang;Jaehong Yoon;Sung Ju Hwang;Chang D. Yoo
{"title":"Continual Learning: Forget-Free Winning Subnetworks for Video Representations","authors":"Haeyong Kang;Jaehong Yoon;Sung Ju Hwang;Chang D. Yoo","doi":"10.1109/TPAMI.2024.3518588","DOIUrl":null,"url":null,"abstract":"Inspired by the Lottery Ticket Hypothesis (LTH), which highlights the existence of efficient subnetworks within larger, dense networks, a high-performing Winning Subnetwork (WSN) in terms of task performance under appropriate sparsity conditions is considered for various continual learning tasks. It leverages pre-existing weights from dense networks to achieve efficient learning in Task Incremental Learning (TIL) and Task-agnostic Incremental Learning (TaIL) scenarios. In Few-Shot Class Incremental Learning (FSCIL), a variation of WSN referred to as the Soft subnetwork (SoftNet) is designed to prevent overfitting when the data samples are scarce. Furthermore, the sparse reuse of WSN weights is considered for Video Incremental Learning (VIL). The use of Fourier Subneural Operator (FSO) within WSN is considered. It enables compact encoding of videos and identifies reusable subnetworks across varying bandwidths. We have integrated FSO into different architectural frameworks for continual learning, including VIL, TIL, and FSCIL. Our comprehensive experiments demonstrate FSO's effectiveness, significantly improving task performance at various convolutional representational levels. Specifically, FSO enhances higher-layer performance in TIL and FSCIL and lower-layer performance in VIL.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"2140-2156"},"PeriodicalIF":18.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10803959/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the Lottery Ticket Hypothesis (LTH), which highlights the existence of efficient subnetworks within larger, dense networks, a high-performing Winning Subnetwork (WSN) in terms of task performance under appropriate sparsity conditions is considered for various continual learning tasks. It leverages pre-existing weights from dense networks to achieve efficient learning in Task Incremental Learning (TIL) and Task-agnostic Incremental Learning (TaIL) scenarios. In Few-Shot Class Incremental Learning (FSCIL), a variation of WSN referred to as the Soft subnetwork (SoftNet) is designed to prevent overfitting when the data samples are scarce. Furthermore, the sparse reuse of WSN weights is considered for Video Incremental Learning (VIL). The use of Fourier Subneural Operator (FSO) within WSN is considered. It enables compact encoding of videos and identifies reusable subnetworks across varying bandwidths. We have integrated FSO into different architectural frameworks for continual learning, including VIL, TIL, and FSCIL. Our comprehensive experiments demonstrate FSO's effectiveness, significantly improving task performance at various convolutional representational levels. Specifically, FSO enhances higher-layer performance in TIL and FSCIL and lower-layer performance in VIL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
持续学习:用于视频表示的无遗忘制胜子网络
彩票假设(LTH)强调在更大、更密集的网络中存在有效的子网,受此启发,在适当的稀疏性条件下,考虑在任务性能方面具有高性能的获胜子网(WSN),用于各种持续学习任务。它利用来自密集网络的预先存在的权重,在任务增量学习(TIL)和任务不可知增量学习(TaIL)场景中实现高效学习。在Few-Shot Class Incremental Learning (FSCIL)中,设计了一种称为软子网(SoftNet)的WSN变体,以防止数据样本稀缺时的过拟合。此外,在视频增量学习(VIL)中考虑了WSN权值的稀疏重用。考虑了在无线传感器网络中使用傅里叶亚神经算子(FSO)。它可以实现视频的紧凑编码,并在不同的带宽上识别可重用的子网。我们已经将FSO集成到不同的架构框架中,用于持续学习,包括VIL、TIL和FSCIL。我们的综合实验证明了FSO的有效性,显着提高了各种卷积表示水平的任务性能。具体而言,FSO增强了TIL和FSCIL的高层性能以及VIL的低层性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GrowSP++: Growing Superpoints and Primitives for Unsupervised 3D Semantic Segmentation. Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1